Results 141 to 150 of about 169,732 (280)

Enhancing Low‐Temperature Performance of Sodium‐Ion Batteries via Anion‐Solvent Interactions

open access: yesAdvanced Functional Materials, EarlyView.
DOL is introduced into electrolytes as a co‐solvent, increasing slat solubility, ion conductivity, and the de‐solvent process, and forming an anion‐rich solvent shell due to its high interaction with anion. With the above virtues, the batteries using this electrolyte exhibit excellent cycling stability at low temperatures. Abstract Sodium‐ion batteries
Cheng Zheng   +7 more
wiley   +1 more source

New multifunctional sulfonato-containing metal phosphonates proton conductors [PDF]

open access: yes, 2018
Anchoring of acidic functional groups to organic linkers acting as ligands in metal phosphonates has been demonstrate to be a valid strategy to develop new proton conductor materials, which exhibit tunable properties and are potentially applicable to ...
Bazaga García, Montse   +8 more
core  

Cu‐Based MOF/TiO2 Composite Nanomaterials for Photocatalytic Hydrogen Generation and the Role of Copper

open access: yesAdvanced Functional Materials, EarlyView.
HKUST‐1/TiO2 composite materials show a very high photocatalytic hydrogen evolution rate which increases as a function of the irradiation time until reaching a plateau and even surpasses the performance of the 1%Pt/TiO2 material after three photocatalytic cycles.
Alisha Khan   +9 more
wiley   +1 more source

Quasi Fe MIL-53 nanozyme inducing ferroptosis and immunogenic cell death for cancer immunotherapy

open access: yesNature Communications
Nanozymes offer diverse therapeutic potentials for cancer treatment which is dependent on the development of nanomaterials. Quasi-metal-organic framework is a class of metal-organic framework-derived nanomaterials with a transition state from metal ...
Zihui Yan   +14 more
doaj   +1 more source

Atomic Size Misfit for Electrocatalytic Small Molecule Activation

open access: yesAdvanced Functional Materials, EarlyView.
This review explores the application and mechanisms of atomic size misfit in catalysis for small molecule activation, focusing on how structural defects and electronic properties can effectively lower the energy barriers of chemical bonds in molecules like H2O, CO2, and N2.
Ping Hong   +3 more
wiley   +1 more source

Copper‐based Materials for Photo and Electrocatalytic Process: Advancing Renewable Energy and Environmental Applications

open access: yesAdvanced Functional Materials, EarlyView.
Cu‐based catalysts as a cornerstone in advancing sustainable energy technologies are fully reviewed in this manuscript, highlighting their potential in photo‐ and electrocatalysis. It includes metallic copper, copper oxides, copper sulfides, copper halide perovskites, copper‐based metal–organic frameworks (MOFs), and covalent organic frameworks (COFs),
Jéssica C. de Almeida   +16 more
wiley   +1 more source

MnI‐Functionalized Covalent Organic Framework as Efficient Electrocatalyst for CO2 Reduction in a Catholyte‐Free Zero‐Gap Electrolyzer

open access: yesAdvanced Functional Materials, EarlyView.
This work demonstrates the successful integration of a phenanthroline‐based 2D COF with MnI catalytic sites into a catholyte‐free membrane‐electrode‐assembly cell for CO2 electroreduction. The crystalline COF actively suppresses Mn⁰–Mn⁰ dimerization, achieving a turnover frequency of 617 h⁻¹ at 2.8 V (full‐cell potential), and enabling stable operation.
Laura Spies   +8 more
wiley   +1 more source

Rational Fine‐Tuning of MOF Pore Metrics: Enhanced SO2 Capture and Sensing with Optimal Multi‐Site Interactions

open access: yesAdvanced Functional Materials, EarlyView.
A pore tuning strategy to amplify the multi‐site MOF‐SO2 interactions is proposed to achieve an enhanced trace SO2 capture and chemiresistive sensing in highly stable isostructural DMOFs by annelating benzene rings. This work provides a facile strategy to achieve tailor‐made stable MOF materials for specific multifunctional applications.
Shanghua Xing   +9 more
wiley   +1 more source

Self‐supportive Three‐Way Photoelectrochemical System Achieving Uranium Recycling, Organic Oxidation, and Electricity Generation in Complex Waters

open access: yesAdvanced Functional Materials, EarlyView.
A self‐sustaining solar photoelectrochemical cell (SS‐PEC) is developed to recover uranium from aqueous UO22+ with concurrent organic oxidation and electricity production. The monolithical photoanode directly captures electrons from organic compounds, leading to the oxidation of organic compounds and the decomposition of uranium‐organic complexes ...
Yumei Wang   +7 more
wiley   +1 more source

Engineering Porous Hollow Metal‐Poly(Heptazine Imide) Spheres: An Optimized Synthetic Strategy for Controlling Surface, Morphology, and Properties

open access: yesAdvanced Functional Materials, EarlyView.
Hollow poly(heptazine imide) spheres are prepared through a novel approach that integrates hard templating with ionothermal synthesis. This method enables precise control over surface area, pore volume, hydrophilicity, light absorption, band position, and metal composition. These tunable properties facilitate the customized design of semiconductors for
Lingli Ni   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy