Results 111 to 120 of about 190,089 (294)

Optimization of Biogenic Synthesis of Colloidal Metal Nanoparticles

open access: hybrid, 2021
Disha N. Moholkar   +3 more
openalex   +1 more source

FeDSNP‐Pa Nanoassemblies: A Triple‐Action Therapeutic Strategy Targeting Oxidative Stress, Inflammation, and Pyroptosis for Retinal Ganglion Cell Protection in Glaucoma

open access: yesAdvanced Functional Materials, EarlyView.
FeDSNP‐Pa, a metallized nanoparticle loaded with sodium pyruvate (Pa), exerts triple therapeutic effects by scavenging reactive oxygen species (ROS), suppressing inflammatory responses, and inhibiting pyroptosis signaling pathways. This multifunctional neuroprotective strategy protecting retinal ganglion cells (RGCs) from elevated intraocular pressure ...
Yukun Wu   +5 more
wiley   +1 more source

Silica-supported PdGa Nanoparticles: Metal Synergy for Highly Active and Selective CO2-to-CH3OH Hydrogenation [PDF]

open access: gold, 2021
Scott R. Docherty   +6 more
openalex   +1 more source

Biomass Native Structure Into Functional Carbon‐Based Catalysts for Fenton‐Like Reactions

open access: yesAdvanced Functional Materials, EarlyView.
This study indicates that eight biomasses with 2D flaky and 1D acicular structures influence surface O types, morphology, defects, N doping, sp2 C, and Co nanoparticles loading in three series of carbon, N‐doped carbon, and cobalt/graphitic carbon. This work identifies how these structural factors impact catalytic pathways, enhancing selective electron
Wenjie Tian   +7 more
wiley   +1 more source

Advanced Flame Retardant Strategies and Fire Performance Assessment for Safer Photovoltaics in Buildings: A Two‐Part Review

open access: yesAdvanced Functional Materials, EarlyView.
The integration of photovoltaic (PV) systems into building structures introduces distinct fire risks with critical implications for occupant safety. This review examines the key fire hazards associated with PV implementation and explores mitigation strategies, including flame‐retardant additives.
Florian Ollagnon   +7 more
wiley   +1 more source

Exploiting the Functionality of Cerium Oxide‐Modified Carbon Nanohorns Catalysts Toward Enhanced CO2 Reduction Performance

open access: yesAdvanced Functional Materials, EarlyView.
A cerium oxide‐carbon nanohybrid catalyst is synthesized via two distinct routes and is integrated into H‐type cells and gas diffusion layers (GDLs) to enhance electrochemical performance. Structural variations significantly affect performance, with the solvothermal sample exhibiting higher current densities.
Alessia Pollice   +9 more
wiley   +1 more source

Composites of Shellac and Silver Nanowires as Flexible, Biobased, and Corrosion‐Resistant Transparent Conductive Electrodes

open access: yesAdvanced Functional Materials, EarlyView.
Shellac, a centuries‐old natural resin, is reimagined as a green material for flexible electronics. When combined with silver nanowires, shellac films deliver transparency, conductivity, and stability against humidity. These results position shellac as a sustainable alternative to synthetic polymers for transparent conductors in next‐generation ...
Rahaf Nafez Hussein   +4 more
wiley   +1 more source

Transport of polymer-coated metal–organic framework nanoparticles in porous media [PDF]

open access: gold, 2022
Satish K. Nune   +7 more
openalex   +1 more source

CO2 Reduction on Copper‐Nitrogen‐Doped Carbon Catalysts Tuned by Pulsed Potential Electrolysis: Effect of Pulse Potential

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates that pulsed potential electrolysis significantly improves CO2 reduction performance on copper‐nitrogen doped carbon electrodes. The formation of cationic copper sites and metallic clusters as a function of applied intermittent potential leads to notable selectivity changes compared to potentiostatic reduction.
Dorottya Hursán   +13 more
wiley   +1 more source

Case studies in surface photochemistry on metal nanoparticles [PDF]

open access: bronze, 2013
D. Menzel   +3 more
openalex   +1 more source

Home - About - Disclaimer - Privacy