Results 171 to 180 of about 144,625 (258)

Theory‐Guided Design of Non‐Precious Single‐Atom Catalyst for Electrocatalytic Chlorine Evolution

open access: yesAdvanced Functional Materials, EarlyView.
To overcome the reliance on noble metals for the chlorine evolution reaction (CER), we designed a non‐precious single‐atom catalyst (SAC), NiN3O–O. It achieves a low overpotential of 75 mV, 95.8% Cl2 selectivity, and outperforms commercial dimensionally stable anodes (DSAs).
Kai Ma   +9 more
wiley   +1 more source

Universal Electronic‐Structure Relationship Governing Intrinsic Magnetic Properties in Permanent Magnets

open access: yesAdvanced Functional Materials, EarlyView.
Permanent magnets derive their extraordinary strength from deep, universal electronic‐structure principles that control magnetization, anisotropy, and intrinsic performance. This work uncovers those governing rules, examines modern modeling and AI‐driven discovery methods, identifies critical bottlenecks, and reveals electronic fingerprints shared ...
Prashant Singh
wiley   +1 more source

Switchable Thermal Mid‐IR Conducting Polymer Antenna Arrays

open access: yesAdvanced Functional Materials, EarlyView.
This study presents switchable mid‐infrared plasmonic resonances in PEDOT antenna arrays. Their optical extinction peaks can be reversibly switched ‘OFF’ and ‘ON’ by tuning the polaronic charge carrier concentration via the polymer's redox state, offering modulation of optical responses in the thermal mid‐infrared range including around 10 µm ...
Pravallika Bandaru   +5 more
wiley   +1 more source

Heavy metals

open access: yes, 2019
Daniel Bell, David Carroll
openaire   +1 more source

High Entropy Wide‐Bandgap Borates with Broadband Luminescence and Large Nonlinear Optical properties

open access: yesAdvanced Functional Materials, EarlyView.
High‐entropy rare‐earth borates exhibit excellent nonlinear optical and broadband luminescence properties arising from multi‐component doping, chemical disorder, increased configurational entropy, and increased lattice and electronic anharmonicity. This formulation enabled us to obtain a large, environmentally stable single crystal with 3X higher laser‐
Saugata Sarker   +14 more
wiley   +1 more source

How to Chemically Protect PFAS‐Free Membranes in Fuel Cells: Radical Quenching Poly(vinylphosphonic acid) Layer

open access: yesAdvanced Functional Materials, EarlyView.
Hydrocarbon membranes are a greener alternative to PFSA in PEM fuel cells, but degrade rapidly from radical attack. We present a novel strategy using poly(vinylphosphonic acid) (PVPA) as a local radical scavenger. Incorporated as an interfacial barrier, PVPA enhances chemical stability and significantly extends membrane lifetime under accelerated ...
Hendrik Sannemüller   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy