Results 91 to 100 of about 175,630 (355)
Acoustic lattice resonances and generalised Rayleigh–Bloch waves
The intrigue of waves on periodic lattices and gratings has resonated with physicists and mathematicians alike for decades. In-depth analysis has been devoted to the seemingly simplest array system: a one-dimensionally periodic lattice of two-dimensional
G. J. Chaplain +4 more
doaj +1 more source
Tunable transmission and harmonic generation in nonlinear metamaterials
We study the properties of a tunable nonlinear metamaterial operating at microwave frequencies. We fabricate the nonlinear metamaterial composed of double split-ring resonators and wires where a varactor diode is introduced into each resonator so that ...
Alexander B. Kozyrev +4 more
core +1 more source
This study examines how pore shape and manufacturing‐induced deviations affect the mechanical properties of 3D‐printed lattice materials with constant porosity. Combining µ‐CT analysis, FEM, and compression testing, the authors show that structural imperfections reduce stiffness and strength, while bulk material inhomogeneities probably enhance ...
Oliver Walker +5 more
wiley +1 more source
Modulating light with light via giant nano-opto-mechanical nonlinearity of plasmonic metamaterial
From the demonstration of saturable absorption by Vavilow and Levshin in 1926, and with invention of the laser, unavailability of strongly nonlinear materials was a key obstacle for developing optical signal processing, in particular in transparent ...
Aspelmeyer +29 more
core +1 more source
This study explores the benefits of metasurfaces made from functional materials, highlighting their ability to be adapted and improved for various high‐frequency applications, including communications and sensing. It first demonstrates the potential of these functional material‐based metasurfaces to advance the field of sub‐THz perceptive networks ...
Yat‐Sing To +5 more
wiley +1 more source
A metamaterial absorber for the terahertz regime: design, fabrication and characterization. [PDF]
We present a metamaterial that acts as a strongly resonant absorber at terahertz frequencies. Our design consists of a bilayer unit cell which allows for maximization of the absorption through independent tuning of the electrical permittivity and ...
H. Tao +5 more
semanticscholar +1 more source
We report an experimental demonstration of thermal tuning of resonance frequency in a planar terahertz metamaterial consisting of a gold split-ring resonator array fabricated on a bulk single crystal strontium titanate (SrTiO3) substrate.
Abul K. Azad +19 more
core +1 more source
Multiband Switchable Microwave Absorbing Metamaterials Based on Reconfigurable Kirigami–Origami
A reconfigurable metamaterial featuring tunable microwave‐absorbing and load‐bearing performance is proposed. Stretchable kirigami and bistable origami configurations are integrated as actuating components, and the synergistic deformation mechanisms are systematically analyzed.
Weimin Ding +7 more
wiley +1 more source
Novel honeycomb sandwich structure wave-absorbing composites with metamaterials
The wide-band wave-absorbing properties of novel metamaterial honeycomb sandwich structure composites were studied, and the effects of wave-absorbing honeycomb height and dielectric property on the wave-absorbing properties of novel metamaterial ...
LI Songming +4 more
doaj +1 more source
Ice Lithography: Recent Progress Opens a New Frontier of Opportunities
This review focuses on recent advancements in ice lithography, including breakthroughs in compatible precursors and substrates, processes and applications, hardware, and digital methods. Moreover, it offers a roadmap to uncover innovation opportunities for ice lithography in fields such as biological, nanoengineering and microsystems, biophysics and ...
Bingdong Chang +9 more
wiley +1 more source

