Results 51 to 60 of about 8,134 (197)
Conformally Perforated Shellular Metamaterials with Tunable Thermomechanical and Acoustic Properties
This study introduces Conformally Perforated Shellular Metamaterials (CPSMs), which overcome TPMS design limitations by mapping 2D cellular layouts onto 3D surfaces. CPSMs exhibit enhanced elastic stiffness, thermal conductivity, and acoustic performance compared to intact P‐type shellulars, demonstrating their potential as multifunctional ...
Benyamin Shahryari+8 more
wiley +1 more source
International audience; Metamaterials are rationally designed composites aiming at effective material parameters that go beyond those of the ingredient materials. For example, negative metamaterial properties, such as the refractive index, thermal expansion coefficient or Hall coefficient, can be engineered from constituents with positive parameters ...
Kadic, M.+3 more
openaire +5 more sources
Modulating Oxide‐Based Quantum Materials by Ion Implantation
This review highlights how ion implantation, a well developed chip‐technology, enables targeted modulation of oxide‐based quantum materials. This includes tuning of metal‐insulator transitions, magnetism, and superconductivity through selective doping, defect creation, and induced lattice strain. Abstract Ion implantation has emerged as a powerful tool
Andreas Herklotz+2 more
wiley +1 more source
Universal metamaterial absorber
We propose a design for an universal absorber, characterized by a resonance frequency that can be tuned from visible to microwave frequencies independently of the choice of the metal and the dielectrics involved. An almost resonant perfect absorption up to 99.8 % is demonstrated at resonance for all polarization states of light and for a very wide ...
Omeis, F.+4 more
openaire +5 more sources
Double Helical Plasmonic Antennas
Plasmonic double helical antennas funnel circularly polarized light to the nanoscale, offering strong chiroptical interaction and directional light emission. Extending a single helix design tool, this study combines numerical modeling with experimental validation, revealing large, broadband dissymmetry factors in the visible range.
Aleksei Tsarapkin+7 more
wiley +1 more source
Smart Polymeric 3D Microscaffolds Hosting Spheroids for Neuronal Research via Quantum Metrology
Development of a platform consisting of 3D microscaffolds supporting 3D embryoid bodies for neuronal research. The polymeric scaffolds enable directed growth of neurites. This study shows nanodiamond‐based quantum sensors graft onto the polymer material, enabling quantum metrology experiments within the 3D neuronal model and thereby providing a ...
Beatriz N. L. Costa+5 more
wiley +1 more source
Pushing Radiative Cooling Technology to Real Applications
Radiative cooling controls surface optical properties for solar and thermal radiation, offering solutions for global warming and energy savings. Despite significant advances, key challenges remain: optimizing optical efficiency, maintaining aesthetics, preventing overcooling, enhancing durability, and enabling scalable production.
Chongjia Lin+8 more
wiley +1 more source
Reprogrammable Mechanical Metamaterials via Passive and Active Magnetic Interactions
The combination of flexible matrices with embedded hard‐magnetic nodes enables metastructures with reprogrammable mechanical properties, even in the absence of external magnetic fields. The evolving interaction between nodes during structural deformation allows mechanical tunability under quasi‐static and dynamic loading, and bistable transitions. This
Carlos Perez‐Garcia+7 more
wiley +1 more source
Retrospective Review on Reticular Materials: Facts and Figures Over the Last 30 Years
To shape the future course of research in reticular materials, this work reflects on the progress over the past 30 years, complemented by input from the community of 228 active researchers through a global, crowdsourced survey: ranging from demographics, how it works, publish and interact, to highlights on both academic and industrial milestones, as ...
Aamod V. Desai+8 more
wiley +1 more source
Nonlocal Conduction in a Metawire
A 1D metawire composed of twisted copper wires is designed and realized. This metamaterial exhibits pronounced effects of nonlocal electric conduction according to Ohm's law. The current at one location not only depends on the electric field at that location but also on other locations.
Julio Andrés Iglesias Martínez+3 more
wiley +1 more source