Results 261 to 270 of about 962,072 (379)

Activating the Osteoblastic USP26 Pathway Alleviates Multi‐Organ Fibrosis by Decreasing Insulin Resistance

open access: yesAdvanced Science, EarlyView.
The loss of Ubiquitin Specific Peptidase 26 (USP26) in osteoblasts results in decreased bone formation, as well as multi‐organ fibrosis associated with insulin resistance (IR). Mechanistically, the absence of USP26 reduces glycolysis and lactate accumulation, leading to decreased histone H3 lysine 18 lactylation (H3K18LA) in the promoter region of KH ...
Jiyuan Tang   +9 more
wiley   +1 more source

The internal structure of poly(methyl methacrylate) latexes in nonpolar solvents

open access: green, 2016
Gregory N. Smith   +10 more
openalex   +2 more sources

Injectable and In Situ Hydration‐Reinforced Hybrid Bone Cements for Accelerated Bone Regeneration

open access: yesAdvanced Science, EarlyView.
To enable minimally invasive bone defect repair, an injectable and hydration‐reinforced bone cement (L‐PEGS/CPC) is designed through biomimetic reconstruction. The hydrophilic L‐PEGS organic phase provides abundant nucleation sites, synergizing with its porous architecture to accelerate CPC hydration, thereby endowing the composite with exceptional ...
Xing Chen   +7 more
wiley   +1 more source

4D Printing of Magnetically Responsive Shape Memory Polymers: Toward Sustainable Solutions in Soft Robotics, Wearables, and Biomedical Devices

open access: yesAdvanced Science, EarlyView.
Merging 4D printing with magneto‐responsive shape memory polymers opens new avenues for intelligent, reconfigurable systems. This review navigates cutting‐edge fabrication techniques, magnetic fillers, and smart polymer matrices, unveiling their potential in soft robotics, biomedical devices, and wearable tech.
Kiandokht Mirasadi   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy