Results 231 to 240 of about 822,037 (305)

High‐Entropy Alloy Design Toward Cobalt Substitution for High Hardness and Low Wear Rate Using X–Cr–Fe–Mn–Ni System

open access: yesAdvanced Engineering Materials, EarlyView.
This study explores the replacement of cobalt using the high‐entropy alloy design strategy for wear‐resistant components operating at high temperatures. Starting from the Cantor alloy, cobalt is substituted with Cu, Al, V, or Mo. Metallurgical and tribological analyses reveal that aluminum, vanadium, and molybdenum effectively strengthen the developed ...
Rafaël Jénot   +5 more
wiley   +1 more source

Photoswitchable Conductive Metal–Organic Frameworks

open access: yesAdvanced Functional Materials, EarlyView.
A conductive material where the conductivity can be modulated remotely by irradiation with light is presented. It is based on films of conductive metal–organic framework type Cu3(HHTP)2 with embedded photochromic molecules such as azobenzene, diarylethene, spiropyran, and hexaarylbiimidazole in the pores.
Yidong Liu   +5 more
wiley   +1 more source

Rare bioparticle detection via deep metric learning. [PDF]

open access: yesRSC Adv, 2021
Luo S   +11 more
europepmc   +1 more source

An XGBoost-Based Machine Learning Approach to Simulate Carbon Metrics for Forest Harvest Planning [PDF]

open access: gold
Bibek Subedi   +6 more
openalex   +1 more source

3D (Bio) Printing Combined Fiber Fabrication Methods for Tissue Engineering Applications: Possibilities and Limitations

open access: yesAdvanced Functional Materials, EarlyView.
Biofabrication aims at providing innovative technologies and tools for the fabrication of tissue‐like constructs for tissue engineering and regenerative medicine applications. By integrating multiple biofabrication technologies, such as 3D (bio) printing with fiber fabrication methods, it would be more realistic to reconstruct native tissue's ...
Waseem Kitana   +2 more
wiley   +1 more source

Quantum Emitters in Hexagonal Boron Nitride: Principles, Engineering and Applications

open access: yesAdvanced Functional Materials, EarlyView.
Quantum emitters in hexagonal boron nitride have emerged as a promising candidate for quantum information science. This review examines the fundamentals of these quantum emitters, including their level structures, defect engineering, and their possible chemical structures.
Thi Ngoc Anh Mai   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy