Results 31 to 40 of about 6,606,593 (201)
This paper presents a comprehensive perspective of the metric of quantum states with a focus on the background independent metric structures. We also explore the possibilities of geometrical formulations of quantum mechanics beyond the quantum state ...
A. Shapere+18 more
core +2 more sources
Fixed points of monotone nonexpansive mappings on a hyperbolic metric space with a graph
In this work, we define the concept of G-monotone nonexpansive multivalued mappings defined on a metric space with a graph G. Then we obtain sufficient conditions for the existence of fixed points for such mappings in hyperbolic metric spaces.
M. Alfuraidan, M. Khamsi
semanticscholar +1 more source
This note is a survey of Analysis on Metric spaces, in connection with the upcoming AMS Mathematics Research Communities program in June 2020.
Bonk, Mario+4 more
openaire +4 more sources
The Gromov–Hausdorff metric on the space of compact metric spaces is strictly intrinsic [PDF]
It is proved that the Gromov-Hausdorff metric on the space of compact metric spaces considered up to an isometry is strictly intrinsic, i.e., the corresponding metric space is geodesic.
A. Ivanov, N. K. Nikolaeva, A. Tuzhilin
semanticscholar +1 more source
Test Spaces for Metric Spaces [PDF]
Introduction. Let n be a positive integer, and let yn be a topological space with the following property: a topological space X has dimension Yn can be extended over X. Then we call yn a test space for dimension n. In a previous paper [10], we characterized test spaces for dimension n under the assumption that both X and yn were separable metric.
openaire +2 more sources
The Calabi metric for the space of Kähler metrics [PDF]
Given any closed Kaehler manifold we define, following an idea by Eugenio Calabi, a Riemannian metric on the space of Kaehler metrics regarded as an infinite dimensional manifold. We prove several geometrical features of the resulting space, some of which we think were already known to Calabi.
openaire +5 more sources
Tangent spaces to metric spaces and to their subspaces [PDF]
We investigate a tangent space at a point of a general metric space and metric space valued derivatives. The conditions under which two different subspace of a metric space have isometric tangent spaces in a common point of these subspaces are completely
Dovgoshey, O.
core +1 more source
Common fixed points for weak commutative mappings on a multiplicative metric space
In this paper, we discuss the unique common fixed point of two pairs of weak commutative mappings on a complete multiplicative metric space. They satisfy the following inequality: d(Sx,Ty)≤{max{d(Ax,By),d(Ax,Sx),d(By,Ty),d(Sx,By),d(Ax,Ty)}}λ, where A and
Xiaoju He, Meimei Song, D. Chen
semanticscholar +1 more source
Dimension of metric spaces [PDF]
It is to be shown that a metric space has dimension ≤ n if and only if there exists a sequence {{ai} of locally finite open coverings, each of order ≤ n, with mesh tending to zero as i→∞, such that (a) the closure of each member of ai+1 is contained in some member of ai+1 is contained in some member of ai.
Witold Hurewicz, C. H. Dowker
openaire +2 more sources
Some Fixed Point Theorems in b-metric Space
In this paper we have obtained some fixed point theorems on b- metric space which is an extension of a fixed point theorem by Hardy (13) and Reich (20).
P. Mishra, Shweta Sachdeva, S. Banerjee
semanticscholar +1 more source