Results 41 to 50 of about 137,540 (108)
This work is devoted to the metrization of probabilistic spaces. More precisely, given such a space $(G,D,\star)$ and provided that the triangle function $\star$ is continuous, we exhibit an explicit and canonical metric $\sigma_D$ on $G$ such that the associated topology is homeomorphic to the so-called strong topology.
Bachir, Mohammed, Bruno, Nazaret
openaire +3 more sources
Upper Comonotonicity and Risk Aggregation Under Dependence Uncertainty
ABSTRACT In this paper, we study dependence uncertainty and the resulting effects on tail risk measures, which play a fundamental role in modern risk management. We introduce the notion of a regular dependence measure, defined on multimarginal couplings, as a generalization of well‐known correlation statistics such as the Pearson correlation. The first
Corrado De Vecchi +2 more
wiley +1 more source
Continuous images of Cantor's ternary set
The Hausdorff-Alexandroff Theorem states that any compact metric space is the continuous image of Cantor's ternary set $C$. It is well known that there are compact Hausdorff spaces of cardinality equal to that of $C$ that are not continuous images of ...
Dreher, Fabian, Samuel, Tony
core +1 more source
A note on the quasi‐local algebra of expander graphs
Abstract We show that the quasi‐local algebra of a coarse disjoint union of expander graphs does not contain a Cartan subalgebra isomorphic to ℓ∞$\ell _\infty$. Ozawa has recently shown that these algebras are distinct from the uniform Roe algebras of expander graphs, and our result describes a further difference.
Bruno M. Braga +2 more
wiley +1 more source
Metrization criteria for compact groups in terms of their dense subgroups
According to Comfort, Raczkowski and Trigos-Arrieta, a dense subgroup D of a compact abelian group G determines G if the restriction homomorphism G^ --> D^ of the dual groups is a topological isomorphism.
Dikranjan, Dikran, Shakhmatov, Dmitri
core +1 more source
Dual spaces of geodesic currents
Abstract Every geodesic current on a hyperbolic surface has an associated dual space. If the current is a lamination, this dual embeds isometrically into a real tree. We show that, in general, the dual space is a Gromov hyperbolic metric tree‐graded space, and express its Gromov hyperbolicity constant in terms of the geodesic current.
Luca De Rosa, Dídac Martínez‐Granado
wiley +1 more source
Average‐Case Matrix Discrepancy: Satisfiability Bounds
ABSTRACT Given a sequence of d×d$$ d\times d $$ symmetric matrices {Wi}i=1n$$ {\left\{{\mathbf{W}}_i\right\}}_{i=1}^n $$, and a margin Δ>0$$ \Delta >0 $$, we investigate whether it is possible to find signs (ε1,…,εn)∈{±1}n$$ \left({\varepsilon}_1,\dots, {\varepsilon}_n\right)\in {\left\{\pm 1\right\}}^n $$ such that the operator norm of the signed sum ...
Antoine Maillard
wiley +1 more source
First‐order Sobolev spaces, self‐similar energies and energy measures on the Sierpiński carpet
Abstract For any p∈(1,∞)$p \in (1,\infty)$, we construct p$p$‐energies and the corresponding p$p$‐energy measures on the Sierpiński carpet. A salient feature of our Sobolev space is the self‐similarity of energy. An important motivation for the construction of self‐similar energy and energy measures is to determine whether or not the Ahlfors regular ...
Mathav Murugan, Ryosuke Shimizu
wiley +1 more source
Deformations of Anosov subgroups: Limit cones and growth indicators
Abstract Let G$G$ be a connected semisimple real algebraic group. We prove that limit cones vary continuously under deformations of Anosov subgroups of G$G$ under a certain convexity assumption, which turns out to be necessary. We apply this result to the notion of sharpness for the action of a discrete subgroup on a non‐Riemannian homogeneous space ...
Subhadip Dey, Hee Oh
wiley +1 more source
On Quasimetrizability of Quasicone Metric Spaces
The aim of this work is to extend interesting results on the metrizability of cone metric spaces as it appears in the literature. In this paper we appeal to quasiuniformities and uniformities to prove that a quasicone metric space is qausimetrizable, and
M. Aphane, S. Moshokoa
semanticscholar +1 more source

