Results 111 to 120 of about 301,103 (232)
This study investigates the mechanical properties of Carbon/Aramid intraply hybrid fiber‐reinforced Elium composites under 6 months of water aging. After aging, flexural strength decreases by 25.89%, tensile strength by 4.40%, and fracture toughness by 21.56%.
Muhammed Huseyin Guzel, Gurol Onal
wiley +1 more source
Scanning electron microscopy in the tests of fibre-cement boards
The subject of this article is research on fiber-cement boards, which are currently used in civil engineering as cladding for ventilated facades, but also as internal claddings.
Adamczak-Bugno Anna+2 more
doaj +1 more source
This article presents the development of Fe‐Mn‐Zn nanocrystalline alloys (0–9 wt% Zn) by mechanical alloying and subsequently hot pressing. Their microstructure, density, hardness, wear resistance, corrosion behavior, and antibacterial properties are systematically examined.
Ilker Emin Dag+3 more
wiley +1 more source
This study investigates the magnetic properties and microstructures of 2PM‐manufactured Ce‐containing (Nd,Pr)‐Fe‐B magnets. The addition of Nd and Dy significantly enhances coercivity by 25% and 81%, respectively, attributed to core‐shell structures.
Chi‐Chia Lin+6 more
wiley +1 more source
A study of mechanical properties and fractography of PBF‐LB/M‐built Inconel 718, performing heat treatments and hot‐isostatic pressing, is presented. Ultimate tensile strength and fatigue behavior are evaluated, examining differences in maximum load behavior, elongation, and regimes of fatigue.
David Sommer+3 more
wiley +1 more source
This study presents the development and characterization of injectable nanocomposite hydrogels based on N‐succinyl chitosan, oxidized guar gum, and bacterial cellulose nanofibers. Emphasizing enhanced mechanical properties and biocompatibility, the hydrogels exhibit fast gelation, improved structural integrity, and reduced swelling. Their potential for
Raimundo Nonato Fernandes Moreira Filho+8 more
wiley +1 more source
Periodic submicron features are fabricated on 304 stainless steel using single and double femtosecond laser pulses. By adjusting polarization, fluence, and inter‐pulse delay, 1D and 2D nanostructures are formed. Enhanced hydrophobicity and dense surface‐enhanced Raman spectroscopy hotspots enable analyte detection down to 10−10 M with good ...
Balaji Baskar+3 more
wiley +1 more source
Recent Progress on 2D‐Material‐Based Smart Textiles: Materials, Methods, and Multifunctionality
Advancements in 2D‐material‐integrated smart textiles are reviewed, with a focus on materials, fabrication methods, and multifunctional applications, including energy harvesting, monitoring, EMI shielding, energy storage, and thermal management. The discussion addresses key challenges and provides insights into the future development of next‐generation
Yong Choi+5 more
wiley +1 more source
Scalable Fabrication of Height‐Variable Microstructures with a Revised Wetting Model
Height‐variable microstructures are fabricated using a scalable CO2 laser machining approach, enabling precise control of wettability through structural gradients. Classical wetting models fail to capture height‐induced effects, necessitating a revised theoretical framework.
Prabuddha De Saram+2 more
wiley +1 more source
Cryo Field Emission Scanning Electron Microscopy
Stanley L. Erlandsen+3 more
doaj +1 more source