Results 61 to 70 of about 759,059 (231)
Three-dimensional particle-in-cell simulations show that the periodic solid-state structures irradiated by intense ($\sim 10^{19}$ W/cm${}^2$) laser pulses can generate collimated electron bunches with energies up to 30 MeV (and acceleration gradient of $
Kostyukov, I. Yu., Serebryakov, D. A.
core
Abstract The aim of this work was to characterize the microstructure of LMO type ceramics. The ceramics obtained by the free sintering at two temperatures 1473 K and 1573 K and two sintering times 6 and 12 h was the test material. One series was also obtained by the hot pressing method for a comparison.
Bruś, Beata, Zarycka, Aldona
openaire +5 more sources
In this manuscript, the processability of X2CrNiMo17‐12‐2 powder coated with silicon carbide, silicon, and silicon nitride nanoparticles is investigated. The amount of nanoparticles varies from 0.25 to 1 vol%. By coating the powder feedstock material with nanoparticles, an enlargement of the process window and an increase in the build rate are achieved.
Nick Hantke+5 more
wiley +1 more source
Herein, silicon‐based nanoparticle coatings on X2CrNiMo17‐12‐2 metal powder are presented. The coating process scale, process parameters, nanoparticle size (65–200 nm) as well as the coating amount are discussed regarding powder properties. The surface roughness affects the flowability, while reflectance depends on the coating material and surface ...
Arne Lüddecke+4 more
wiley +1 more source
Enhanced Fog Water Harvesting on Superhydrophobic Steel Meshes
Fog harvesting using mesh designs offers a sustainable solution to water scarcity. This study highlights key considerations for fog harvesting research and develops a methodology for a standardized protocol reflecting fog characteristics and environmental conditions.
Pegah Sartipizadeh+3 more
wiley +1 more source
Deformation Behavior of La2O3‐Doped Copper during Equal Channel Angular Pressing
By additions of strengthening elements and/or structure optimization, the mechanical properties of copper can be increased while keeping favorable electric conductivity. By combining addition of La2O3 and processing by equal channel angular pressing, substructure development is achieved, leading to increase in microhardness to more than double the ...
Lenka Kunčická+2 more
wiley +1 more source
Growth-Induced In-Plane Uniaxial Anisotropy in V$_{2}$O$_{3}$/Ni Films
We report on a strain-induced and temperature dependent uniaxial anisotropy in V$_{2}$O$_{3}$/Ni hybrid thin films, manifested through the interfacial strain and sample microstructure, and its consequences on the angular dependent magnetization reversal.
de la Venta, Jose+6 more
core +2 more sources
Beyond Order: Perspectives on Leveraging Machine Learning for Disordered Materials
This article explores how machine learning (ML) revolutionizes the study and design of disordered materials by uncovering hidden patterns, predicting properties, and optimizing multiscale structures. It highlights key advancements, including generative models, graph neural networks, and hybrid ML‐physics methods, addressing challenges like data ...
Hamidreza Yazdani Sarvestani+4 more
wiley +1 more source
Nucleation and phase selection in undercooled melts: Magnetic alloys of industrial relevance (MAGNEPHAS) [PDF]
Studies of phase selection and microstructure evolution in high-performance magnetic materials are an urgent need for optimization of production routes.
Fransaer, J+11 more
core
This study examines the mechanical properties of triply periodic minimal surfaces (TPMS)‐based lattices, analyzing 36 architectures in elastic and plastic regimes. It evaluates the applicability of beam‐based scaling laws to TPMS lattices. Rigidity arises from the alignment of members with the load direction and solid regions preventing rotation.
Lucía Doyle+2 more
wiley +1 more source