Results 241 to 250 of about 307,888 (268)

Ferrocene Derivatives Enable Ultrasensitive Perovskite Photodetectors with Enhanced Reverse Bias Stability

open access: yesAdvanced Functional Materials, EarlyView.
Novel ferrocene derivatives (e.g., FcPhc2) are used as an ultrathin layer hole‐blocking layer, reducing hole injection from the Ag contact. This results in an ultralow noise spectral density of 1.2 × 10−14 A Hz−1/2, and a high specific detectivity of 8.1 × 1012 Jones at −0.5 V.
Eunyoung Hong   +16 more
wiley   +1 more source

Engineering Novel DNA Nanoarchitectures for Targeted Drug Delivery and Aptamer Mediated Apoptosis in Cancer Therapeutics

open access: yesAdvanced Functional Materials, EarlyView.
Designer DNA Architecture‐templated Drug Conjugates (DDA‐DCs) are comprised of a DNA nanomaterial decorated with multiple drug‐loaded DNA aptamers. DDA‐DCs use a combination of multiple aptamer types, each recognizing a different membrane protein to achieve precise targeting of cancer cells.
Abhisek Dwivedy   +19 more
wiley   +1 more source

Mild solutions for multi-term time-fractional differential equations with nonlocal initial conditions

open access: yesElectronic Journal of Differential Equations, 2014
Edgardo Alvarez-Pardo, Carlos Lizama
doaj  

Oxygen Defect Engineering of Hexagonal Perovskite Oxides to Boost Catalytic Performance for Aerobic Oxidation of Sulfides to Sulfones

open access: yesAdvanced Functional Materials, EarlyView.
Ru‐substituted hexagonal perovskite SrMnO3, featuring face‐shared oxygen species, is designed as an effective heterogeneous catalyst for the aerobic oxidation of sulfides. The catalyst demonstrates high selectivity to sulfones (>99%) under mild reaction conditions (≥30 °C). Ru substitution promotes oxygen vacancy formation of face‐shared oxygen species
Keiju Wachi   +5 more
wiley   +1 more source

H2O2‐Generating Advanced Nanomaterials for Cancer Treatment

open access: yesAdvanced Functional Materials, EarlyView.
H2O2‐generating nanoplatforms can exploit tumor redox imbalance for O2 and toxic reactive oxygen species generation, leading to hypoxia reversal, and apoptosis of cancer cells, respectively. This review highlights the mechanisms of these nanoplatforms, including exogenous H₂O₂ delivery, endogenous amplification, and metal peroxides, which leads to ...
Kiyan Musaie   +8 more
wiley   +1 more source

Using Recycled Materials in a Novel Dual Binder System for Hard Carbon Anodes: Closing the Loop Toward Sustainable Li‐/Na‐ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
The study explores for the first time the use of polyvinyl butyral (PVB), particularly recycled PVB, as a sustainable binder for Li/Na‐based electrodes in the framework of the H2020 SUNRISE EU project. Findings revealed that electrodes bound with a sustainable PAA/PVB mixture demonstrated exceptional rate capability and high initial Coulombic ...
Hamideh Darjazi   +4 more
wiley   +1 more source

Intraoral Drug Delivery: Bridging the Gap Between Academic Research and Industrial Innovations

open access: yesAdvanced Functional Materials, EarlyView.
Intraoral drug delivery offers a promising route for systemic and localized therapies, yet challenges such as enzymatic degradation, limited permeability, and microbial interactions hinder efficacy. This figure highlights innovative strategies—mucoadhesive materials, enzyme inhibitors, and permeation enhancers—to overcome these barriers.
Soheil Haddadzadegan   +4 more
wiley   +1 more source

Quantum Emitters in Hexagonal Boron Nitride: Principles, Engineering and Applications

open access: yesAdvanced Functional Materials, EarlyView.
Quantum emitters in hexagonal boron nitride have emerged as a promising candidate for quantum information science. This review examines the fundamentals of these quantum emitters, including their level structures, defect engineering, and their possible chemical structures.
Thi Ngoc Anh Mai   +8 more
wiley   +1 more source

Stable, Easy‐to‐Handle, Fully Autologous Electrospun Polymer‐Peptide Skin Equivalent for Severe Burn Injuries

open access: yesAdvanced Functional Materials, EarlyView.
A bioengineered skin equivalent composed of electrospun poly(ε‐caprolactone) (PCL) and the bioactive peptide Fmoc‐FRGD is developed for severe burn treatment. This scaffold promotes full‐thickness skin regeneration by supporting cellular adhesion and integration. In‐vitro and in‐vivo studies show enhanced mechanical stability, accelerated wound closure,
Dana Cohen‐Gerassi   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy