Results 191 to 200 of about 636,981 (307)

Effect of Extraction Methods on Polyphenols, Flavonoids, Mineral Elements, and Biological Activities of Essential Oil and Extracts of Mentha pulegium L. [PDF]

open access: yesMolecules, 2021
Messaoudi M   +11 more
europepmc   +1 more source

Platelet Lysate–Enriched Human Induced Pluripotent Stem Cell–Derived Chondrocyte Sheets for Bone Defect Repair via Endochondral Ossification

open access: yesAdvanced Healthcare Materials, EarlyView.
Human iPSC‐derived hypertrophic chondrocyte sheet promotes bone regeneration. Abstract Bone defects are a major clinical challenge, primarily owing to the limited self‐healing capacity of bones and the high risk of complications associated with conventional treatment strategies.
Yiwei Chen   +9 more
wiley   +1 more source

A 3D Bioprinted Spheroid‐Laden dECM‐Enriched Osteosarcoma Model for Enhanced Drug Testing and Therapeutic Discovery

open access: yesAdvanced Healthcare Materials, EarlyView.
A 3D biomimetic OS model was developed by bioprinting an OS‐cell‐derived dECM‐enriched bioink with OS spheroids incorporated. The model showed upregulation of known OS prognostic markers and increased resistance to doxorubicin, compared to 2D cultures and scaffold‐free spheroids, making this a more clinically relevant platform for drug discovery ...
Margarida F. Domingues   +6 more
wiley   +1 more source

Effects of Iron Oxide Nanoparticles (Fe3O4) on Growth, Photosynthesis, Antioxidant Activity and Distribution of Mineral Elements in Wheat (Triticum aestivum) Plants. [PDF]

open access: yesPlants (Basel), 2022
Feng Y   +8 more
europepmc   +1 more source

Decellularized Extracellular Matrix (dECM) in Tendon Regeneration: A Comprehensive Review

open access: yesAdvanced Healthcare Materials, EarlyView.
Decellularized Extracellular Matrix (dECM) offers a promising solution by replicating the native tendon microenvironment and promoting regeneration. This review highlights advances in the decellularization methods, as well as their integration with emerging technologies and translational progress in tendon tissue engineering.
Kumaresan Sakthiabirami   +4 more
wiley   +1 more source

SiO2‐CaOCME/Poly(Tetrahydrofuran)/Poly(Caprolactone) 3D‐Printed Scaffolds Drive Human‐Bone Marrow Stromal Cell Osteogenic Differentiation

open access: yesAdvanced Healthcare Materials, EarlyView.
3D printed hybrid scaffolds combining bioactive silica–calcium chemistry with elastic polymers guide human bone stem cells to form bone. The scaffolds support cell survival, organization, and invasion while releasing osteogenic ions. Together, architecture and composition drive bone‐specific gene expression, extracellular matrix organization, and ...
David R. Sory   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy