Results 201 to 210 of about 297,134 (338)

Multiscale Hybrid Surface Topographies Orchestrate Immune Regulation, Antibacterial Defense, and Tissue Regeneration

open access: yesAdvanced Healthcare Materials, EarlyView.
Hybrid wrinkled topographies coordinate immune, tissue, and bacterial interactions. The surfaces promote osteointegration, tune macrophage polarization, and inhibit biofilm formation, highlighting a multifunctional strategy for next‐generation implant design.
Mohammad Asadi Tokmedash   +4 more
wiley   +1 more source

Ascorbic Acid Modulates Collagen Properties in Glucocorticoid‐Induced Osteoporotic Bone: Insights into Chemical, Mechanical, and Biological Regulation

open access: yesAdvanced Healthcare Materials, EarlyView.
Osteoporosis from long‐term glucocorticoid (GIOP) use elevates susceptibility to fracture. This study shows GCs impair ascorbic acid (AA) metabolism in osteoblasts, collagen synthesis and extracellular matrix integrity. AA enhanced collagen biochemical and mechanical properties and restored osteoblast and endothelial function. These findings underscore
Micaila DE Curtis   +19 more
wiley   +1 more source

Body Biofluids for Minimally‐Invasive Diagnostics: Insights, Challenges, Emerging Technologies, and Clinical Potential

open access: yesAdvanced Healthcare Materials, EarlyView.
Recent advances in diagnostics have accelerated the development of miniaturized wearable technologies for the continuous monitoring of diseases. This paradigm is shifting healthcare away from invasive, centralized blood tests toward decentralized monitoring, using alternative body biofluids.
Lanka Tata Rao   +2 more
wiley   +1 more source

Downstream processing of high chain length polysialic acid using membrane adsorbers and clay minerals for application in tissue engineering

open access: green, 2012
Ismet Bice   +9 more
openalex   +2 more sources

Harnessing Advances in Bone Tissue Engineering for Design of Bone‐on‐Chip Systems

open access: yesAdvanced Healthcare Materials, EarlyView.
Bone‐on‐chip (BoC) systems demonstrate significant potential as next‐generation models to study human (patho)physiology and evaluate new therapies. However, progress toward functional, human‐like BoCs has been hindered by the structural and functional complexity of bone. This perspective discusses how insights from bone tissue engineering can guide BoC
Farhad Sanaei   +6 more
wiley   +1 more source

Platelet Lysate–Enriched Human Induced Pluripotent Stem Cell–Derived Chondrocyte Sheets for Bone Defect Repair via Endochondral Ossification

open access: yesAdvanced Healthcare Materials, EarlyView.
Human iPSC‐derived hypertrophic chondrocyte sheet promotes bone regeneration. Abstract Bone defects are a major clinical challenge, primarily owing to the limited self‐healing capacity of bones and the high risk of complications associated with conventional treatment strategies.
Yiwei Chen   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy