Results 41 to 50 of about 1,358 (218)
Rigidity and Triviality of Gradient r-Almost Newton-Ricci-Yamabe Solitons
In this paper, we develop the concept of gradient r-Almost Newton-Ricci-Yamabe solitons (in brief, gradient r-ANRY solitons) immersed in a Riemannian manifold.
Mohd Danish Siddiqi, Fatemah Mofarreh
doaj +1 more source
On computing local monodromy and the numerical local irreducible decomposition
Abstract Similarly to the global case, the local structure of a holomorphic subvariety at a given point is described by its local irreducible decomposition. Geometrically, the key requirement for obtaining a local irreducible decomposition is to compute the local monodromy action of a generic linear projection at the given point, which is always well ...
Parker B. Edwards +1 more
wiley +1 more source
WDVV‐based recursion for open Gromov–Witten invariants
Abstract We give a computability result for open Gromov–Witten invariants based on open Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equations. This is analogous to the result of Kontsevich–Manin for closed Gromov–Witten invariants. For greater generality, we base the argument on a formal object, the Frobenius superpotential, that generalizes several ...
Roi Blumberg, Sara B. Tukachinsky
wiley +1 more source
Complete Minimal Hypersurfaces in a Sphere
In this paper we investigate complete minimal hypersurfaces with at most two principal curvatures. We prove that if the squared norm S of the second fundamental form satisfies S = n, then S = n and f(Mn) is a minimal Clifford torus.
Hasanis, T. +2 more
openaire +2 more sources
An eigenvalue estimate for self-shrinkers in a Ricci shrinker
In this paper, we study the drifted Laplacian Δf on a hypersurface M in a Ricci shrinker (M̄,g,f) $\left(\bar{M},g,f\right)$ . We prove that the spectrum of Δf is discrete for immersed hypersurfaces with bounded weighted mean curvature in a Ricci ...
Conrado Franciele, Zhou Detang
doaj +1 more source
From non-Kählerian surfaces to Cremona group of P2(C)
For any minimal compact complex surface S with n = b2(S) > 0 containing global spherical shells (GSS) we study the effectiveness of the 2n parameters given by the n blown up points.
Dloussky Georges
doaj +1 more source
Compactness of certain class of singular minimal hypersurfaces [PDF]
Akashdeep Dey
openalex +1 more source
Dimer models and conformal structures
Abstract Dimer models have been the focus of intense research efforts over the last years. Our paper grew out of an effort to develop new methods to study minimizers or the asymptotic height functions of general dimer models and the geometry of their frozen boundaries.
Kari Astala +3 more
wiley +1 more source
Pseudo-Reimannian manifolds endowed with an almost para f-structure
Let M˜(U,Ω˜,η˜,ξ,g˜) be a pseudo-Riemannian manifold of signature (n+1,n). One defines on M˜ an almost cosymplectic para f-structure and proves that a manifold M˜ endowed with such a structure is ξ-Ricci flat and is foliated by minimal hypersurfaces ...
Vladislav V. Goldberg, Radu Rosca
doaj +1 more source
The DNA of Calabi–Yau Hypersurfaces
Abstract Genetic Algorithms are implemented for triangulations of four‐dimensional reflexive polytopes, which induce Calabi–Yau threefold hypersurfaces via Batyrev's construction. These algorithms are shown to efficiently optimize physical observables such as axion decay constants or axion–photon couplings in string theory compactifications.
Nate MacFadden +2 more
wiley +1 more source

