Results 181 to 190 of about 212,106 (307)

Targeting p38α in cancer: challenges, opportunities, and emerging strategies

open access: yesMolecular Oncology, EarlyView.
p38α normally regulates cellular stress responses and homeostasis and suppresses malignant transformation. In cancer, however, p38α is co‐opted to drive context‐dependent proliferation and dissemination. p38α also supports key functions in cells of the tumor microenvironment, including fibroblasts, myeloid cells, and T lymphocytes.
Angel R. Nebreda
wiley   +1 more source

Detection of minimal residual disease in circulating cell-free DNA in acute myeloid leukemia. [PDF]

open access: yesSci Rep
Sommer C   +8 more
europepmc   +1 more source

[Minimal residual disease].

open access: yesHaematologica, 1992
P, Francia di Celle, R, Foà
openaire   +1 more source

Correlation of the differential expression of PIK3R1 and its spliced variant, p55α, in pan‐cancer

open access: yesMolecular Oncology, EarlyView.
PIK3R1 undergoes alternative splicing to generate the isoforms, p85α and p55α. By combining large patient datasets with laboratory experiments, we show that PIK3R1 spliced variants shape cancer behavior. While tumors lose the protective p85α isoform, p55α is overexpressed, changes linked to poorer survival and more pronounced in African American ...
Ishita Gupta   +10 more
wiley   +1 more source

RaMBat: Accurate identification of medulloblastoma subtypes from diverse data sources with severe batch effects

open access: yesMolecular Oncology, EarlyView.
To integrate multiple transcriptomics data with severe batch effects for identifying MB subtypes, we developed a novel and accurate computational method named RaMBat, which leveraged subtype‐specific gene expression ranking information instead of absolute gene expression levels to address batch effects of diverse data sources.
Mengtao Sun, Jieqiong Wang, Shibiao Wan
wiley   +1 more source

Combination of disease burden before allogeneic transplantation and early post-transplant minimal residual disease predicts survival in patients with acute myeloid leukemia [PDF]

open access: gold
Claudia Núñez‐Torrón   +13 more
openalex   +1 more source

Targeted modulation of IGFL2‐AS1 reveals its translational potential in cervical adenocarcinoma

open access: yesMolecular Oncology, EarlyView.
Cervical adenocarcinoma patients face worse outcomes than squamous cell carcinoma counterparts despite similar treatment. The identification of IGFL2‐AS1's differential expression provides a molecular basis for distinguishing these histotypes, paving the way for personalized therapies and improved survival in vulnerable populations globally.
Ricardo Cesar Cintra   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy