Results 221 to 230 of about 75,955 (297)

In Situ Study of Resistive Switching in a Nitride‐Based Memristive Device

open access: yesAdvanced Functional Materials, EarlyView.
In situ TEM biasing experiment demonstrates the volatile I‐V characteristic of MIM lamella device. In situ STEM‐EELS Ti L2/L3 ratio maps provide direct evidence of the oxygen vacancies migrations under positive/negative electrical bias, which is critical for revealing the RS mechanism for the MIM lamella device.
Di Zhang   +19 more
wiley   +1 more source

Gradual loss of mobile genetic elements in <i>Staphylococcus aureus</i> USA300 in a closed hospital niche. [PDF]

open access: yesISME Commun
Ranc AG   +8 more
europepmc   +1 more source

Grain Boundary Space Charge Engineering of Solid Oxide Electrolytes: Model Thin Film Study

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates unprecedented control of grain boundary electrical properties in solid electrolytes. Selective diffusion of cations through grain boundaries in thin films enables 12 orders of magnitude variation in ionic resistance, proving that systematic chemical modification of grain boundary electrical properties is feasible.
Thomas Defferriere   +5 more
wiley   +1 more source

Exploring the diversity of anti-defense systems across prokaryotes, phages and mobile genetic elements. [PDF]

open access: yesNucleic Acids Res
Tesson F   +9 more
europepmc   +1 more source

Programmable DNA‐Peptide Hybrid Nanostructures for Potent Neutralization of Multiple Influenza a Virus Subtypes

open access: yesAdvanced Functional Materials, EarlyView.
A multivalent antiviral platform based on honeycomb‐shaped DNA nanostructures (HC–Urumin) is developed to enhance the potency and breadth of the host defense peptide Urumin. Through spatially patterned trimeric presentation, HC–Urumin disrupts influenza A virus entry, improves cell viability, and reduces disease severity in vivo‐offering a modular and ...
Saurabh Umrao   +11 more
wiley   +1 more source

Multi‐Ion Doping Controlled CEI Formation in Structurally‐Stable High‐Energy Monoclinic‐Phase NASICON Cathodes for Sodium‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
The graphical abstract illustrates the synthesis pathway, morphological feature, and thermodynamic feasibility of entropy‐engineered NASICON cathodes for sodium‐ion batteries. Abstract Overcoming the energy density limitations of sodium‐ion batteries (NIBs) requires innovative strategies to optimize cathode materials.
Sharad Dnyanu Pinjari   +9 more
wiley   +1 more source

Capture of mobile genetic elements following intercellular conjugation promotes the production of ST11-KL64 CR-hvKP. [PDF]

open access: yesMicrobiol Spectr
Huang S   +11 more
europepmc   +1 more source

Reducing Open‐Circuit Voltage Losses in Wide‐Bandgap FAPbBr3 Perovskite Solar Cells for Continuous Unassisted Light‐Driven Water Splitting

open access: yesAdvanced Functional Materials, EarlyView.
The combination of formamidinium thiocyanate and 1,3‐propane diammonium iodide for bulk and top‐surface passivation, and a ternary fullerene blend to improve energy band alignment, suppresses energy losses in wide‐bandgap FAPbBr3 perovskite solar cells.
Laura Bellini   +9 more
wiley   +1 more source

Complete genomes of Asgard archaea reveal diverse integrated and mobile genetic elements. [PDF]

open access: yesGenome Res
Valentin-Alvarado LE   +13 more
europepmc   +1 more source

Synergistic Fluorine and Cyanide Co‐Modification to Reinforce Photoinduced Excitons Formation and Transfer for Efficient CO2 Photoreduction

open access: yesAdvanced Functional Materials, EarlyView.
An advanced F‐doped and ─CN group co‐modified FCCN is developed. Due to the synergistic effects of co‐modification in promoting photogenerated exciton generation, enhancing charge kinetics, expanding active interfacial areas, and optimizing CO2 interfacial reactions, the FCCN photocatalyst demonstrates excellent catalytic performance and high ...
Sheng‐Qi Guo   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy