Results 301 to 310 of about 11,403,908 (364)
Some of the next articles are maybe not open access.
Related searches:
Related searches:
The International Journal of Advanced Manufacturing Technology, 2022
Antonio Wagner Forti +2 more
semanticscholar +1 more source
Antonio Wagner Forti +2 more
semanticscholar +1 more source
Nature, 1953
Funzioni Abeliane Modulari Lezioni raccolte dal Dott. Mario Rosati. Per Fabio Conforto. Vol. 1: Preliminari e parte gruppale; geometria simplettica. Pp. 454. (Roma: Edizioni Universitarie Docet, 1951.) 3900 lire.
openaire +1 more source
Funzioni Abeliane Modulari Lezioni raccolte dal Dott. Mario Rosati. Per Fabio Conforto. Vol. 1: Preliminari e parte gruppale; geometria simplettica. Pp. 454. (Roma: Edizioni Universitarie Docet, 1951.) 3900 lire.
openaire +1 more source
The modular group and modular functions
1976In the foregoing chapter we encountered unimodular transformations $$ {{c\tau + d}} $$ where a, b, c, d are integers with ad — bc = 1. This chapter studies such transformations in greater detail and also studies functions which, Iike J(τ), are invariant under unimodular transformations.
openaire +1 more source
Rendiconti del Circolo Matematico di Palermo, 2004
The paper is related to the classical theorem of Lyapunov which says that an \(R^n\)-valued atomless \(\sigma\)-additive measure on a \(\sigma\)-algebra has a convex range. \textit{G. Knowles} [SIAM J. Control 13, 294--303 (1974; Zbl 0302.49005)] generalized this theorem for non-injective measures with values in locally convex spaces. \textit{P.
openaire +3 more sources
The paper is related to the classical theorem of Lyapunov which says that an \(R^n\)-valued atomless \(\sigma\)-additive measure on a \(\sigma\)-algebra has a convex range. \textit{G. Knowles} [SIAM J. Control 13, 294--303 (1974; Zbl 0302.49005)] generalized this theorem for non-injective measures with values in locally convex spaces. \textit{P.
openaire +3 more sources

