Results 281 to 290 of about 571,101 (336)

Graded Hydroxyapatite Triply Periodic Minimal Surface Structures for Bone Tissue Engineering Applications

open access: yesAdvanced Healthcare Materials, EarlyView.
This study investigates the role of triply periodic minimal structures in load bearing bone tissue engineering applications. Research uses a combination of mechanical testing, material characterization, and in vitro tests to study the impact of TPMS lattice structures (gyroid, lidinoid and split‐P).
Tejas M. Koushik   +2 more
wiley   +1 more source

Hydrogels with prestressed tensegrity structures. [PDF]

open access: yesNat Commun
Xue B   +12 more
europepmc   +1 more source

3D Bioprinted Head and Neck Squamous Cell Carcinoma (HNSCC) Model Using Tunicate Derived Nanocellulose (NC) Bioink

open access: yesAdvanced Healthcare Materials, Volume 14, Issue 7, March 14, 2025.
A 3D bioprinted HNSCC model for use in anti‐cancer drug testing is established in proof‐of‐concept. The innovative tunicate‐derived nanocellulose hydrogel proved to be a viable alternative to gelatin‐based hydrogel, offering improved bioprintability for HNSCC model establishment.
Alexya Azhakesan   +7 more
wiley   +1 more source

Liquid Crystalline Networks Hamper the Malignancy of Cancer Cells

open access: yesAdvanced Healthcare Materials, Volume 14, Issue 7, March 14, 2025.
Liquid Crystalline Networks are used as scaffolds for the growth of A375 melanoma cells demonstrating to affect their malignancy. Indeed, only by contact, these materials reduces cell proliferation and colony formation capacity, while increasing the number of senescent cells and promoting the mesenchymal to epithelial transition.
Daniele Martella   +9 more
wiley   +1 more source

Mechanically and Chemically Defined PEG Hydrogels Improve Reproducibility in Human Cardioid Development

open access: yesAdvanced Healthcare Materials, EarlyView.
Synthetic matrix metalloproteinase (MMP)‐degradable polyethylene glycol (PEG)‐based hydrogels are developed to investigate the influence of mechanical and biochemical cues on cardioid development. Matrix stiffness and cell adhesion motifs significantly regulate cardioid formation, chamber morphogenesis, contractile function, and cardioid transcriptome.
Yuanhui Song   +6 more
wiley   +1 more source

Critical configurations of planar robot arms

open access: yesOpen Mathematics, 2013
Khimshiashvili Giorgi   +3 more
doaj   +1 more source

Home - About - Disclaimer - Privacy