Results 51 to 60 of about 34,808 (248)
A Levi–Civita Equation on Monoids, Two Ways
We consider the Levi–Civita equation f(xy)=g1(x)h1(y)+g2(x)h2(y)f\left( {xy} \right) = {g_1}\left( x \right){h_1}\left( y \right) + {g_2}\left( x \right){h_2}\left( y \right) for unknown functions f, g1, g2, h1, h2 : S → ℂ, where S is a monoid.
Ebanks Bruce
doaj +1 more source
Endomorphisms and anti-endomorphisms of some finite groupoids
In this paper, we study anti-endomorphisms of some finite groupoids. Previously, special groupoids $S(k, q)$ of order $k(1+k)$ with a generating set of $k$ elements were introduced.
Litavrin Andrey V.
doaj +1 more source
Realizable sets of catenary degrees of numerical monoids
The catenary degree is an invariant that measures the distance between factorizations of elements within an atomic monoid. In this paper, we classify which finite subsets of $\mathbb Z_{\ge 0}$ occur as the set of catenary degrees of a numerical monoid ...
O'Neill, Christopher, Pelayo, Roberto
core +1 more source
On locally compact shift-continuous topologies on the α-bicyclic monoid
A topology τ on a monoid S is called shift-continuous if for every a, b ∈ S the two-sided shift S → S, x ↦ axb, is continuous. For every ordinal α ≤ ω, we describe all shift-continuous locally compact Hausdorff topologies on the α-bicyclic monoid Bα ...
Bardyla Serhii
doaj +1 more source
On Endomorphisms of the Additive Monoid of Subnets of a Two-layer Neural Network
Previously, for each multilayer neural network of direct signal propagation (hereinafter, simply a neural network), finite commutative groupoids were introduced, which were called additive subnet groupoids.
Andrey Litavrin
doaj +1 more source
Scissors congruence K$K$‐theory for equivariant manifolds
Abstract We introduce a scissors congruence K$K$‐theory spectrum that lifts the equivariant scissors congruence groups for compact G$G$‐manifolds with boundary, and we show that on π0$\pi _0$, this is the source of a spectrum‐level lift of the Burnside ring‐valued equivariant Euler characteristic of a compact G$G$‐manifold.
Mona Merling +4 more
wiley +1 more source
This paper gives a self-contained and complete proof of the isomorphism of freely generated monoids extracted from Temperley-Lieb algebras with monoids made of Kauffman's diagrams.
Borisavljević, Mirjana +2 more
openaire +2 more sources
The log Grothendieck ring of varieties
Abstract We define a Grothendieck ring of varieties for log schemes. It is generated by one additional class “P$P$” over the usual Grothendieck ring. We show the naïve definition of log Hodge numbers does not make sense for all log schemes. We offer an alternative that does.
Andreas Gross +4 more
wiley +1 more source
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
openaire +4 more sources
We construct certain monoids, called tied monoids. These monoids result to be semidirect products finitely presented and commonly built from braid groups and their relatives acting on monoids of set partitions. The nature of our monoids indicate that they should give origin to new knot algebras; indeed, our tied monoids include the tied braid monoid ...
Arcis, Diego, Juyumaya, Jesús
openaire +2 more sources

