Results 71 to 80 of about 177 (175)
Abstract We consider a planar Coulomb gas ensemble of size N$N$ with the inverse temperature β=2$\beta =2$ and external potential Q(z)=|z|2−2clog|z−a|$Q(z)=|z|^2-2c \log |z-a|$, where c>0$c>0$ and a∈C$a \in \mathbb {C}$. Equivalently, this model can be realised as N$N$ eigenvalues of the complex Ginibre matrix of size (c+1)N×(c+1)N$(c+1) N \times (c+1)
Sung‐Soo Byun +2 more
wiley +1 more source
Debiasing piecewise deterministic Markov process samplers using couplings
Abstract Monte Carlo methods—such as Markov chain Monte Carlo (MCMC) and piecewise deterministic Markov process (PDMP) samplers—provide asymptotically exact estimators of expectations under a target distribution. There is growing interest in alternatives to this asymptotic regime, in particular in constructing estimators that are exact in the limit of ...
Adrien Corenflos +2 more
wiley +1 more source
Four Generated, Squarefree, Monomial Ideals [PDF]
to appear in "Bridging Algebra, Geometry, and Topology", Editors Denis Ibadula, Willem Veys, Springer Proceed. in Math.
Popescu, Adrian, Popescu, Dorin
openaire +2 more sources
Explicit constructions of short virtual resolutions of truncations
Abstract We propose a concept of truncation for arbitrary smooth projective toric varieties and construct explicit cellular resolutions for nef truncations of their total coordinate rings. We show that these resolutions agree with the short resolutions of Hanlon, Hicks, and Lazarev, which were motivated by symplectic geometry, and we use our definition
Lauren Cranton Heller
wiley +1 more source
Polarization and Gorenstein liaison
Abstract A major open question in the theory of Gorenstein liaison is whether or not every arithmetically Cohen–Macaulay subscheme of Pn$\mathbb {P}^n$ can be G‐linked to a complete intersection. Migliore and Nagel showed that if such a scheme is generically Gorenstein (e.g., reduced), then, after re‐embedding so that it is viewed as a subscheme of Pn ...
Sara Faridi +3 more
wiley +1 more source
An algorithm to compute the Stanley depth of monomial ideals
In this article we describe an algorithm to compute the Stanley depth of I=J where I and J are monomial ideals. We describe also an implementation in CoCoA.
Giancarlo Rinaldo
doaj
Iitaka fibrations and integral points: A family of arbitrarily polarized spherical threefolds
Abstract Studying Manin's program for a family of spherical log Fano threefolds, we determine the asymptotic number of integral points whose height associated with an arbitrary ample line bundle is bounded. This confirms a recent conjecture by Santens and sheds new light on the logarithmic analog of Iitaka fibrations, which have not yet been adequately
Ulrich Derenthal, Florian Wilsch
wiley +1 more source
Regularity of Squarefree Monomial Ideals [PDF]
We survey a number of recent studies of the Castelnuovo-Mumford regularity of squarefree monomial ideals. Our focus is on bounds and exact values for the regularity in terms of combinatorial data from associated simplicial complexes and/or hypergraphs.
openaire +2 more sources
W‐algebras, Gaussian free fields, and g$\mathfrak {g}$‐Dotsenko–Fateev integrals
Abstract Based on the intrinsic connection between Gaussian free fields and the Heisenberg vertex algebra, we study some aspects of the correspondence between probability theory and W$W$‐algebras. This is first achieved by providing a construction of the W$W$‐algebra associated to a complex simple Lie algebra g$\mathfrak {g}$ by means of Gaussian free ...
Baptiste Cerclé
wiley +1 more source
New methods for constructing shellable simplicial complexes
A clutter $mathcal{C}$ with vertex set $[n]$ is an antichain of subsets of $[n]$, called circuits, covering all vertices. The clutter is $d$-uniform if all of its circuits have the same cardinality $d$.
Mohammad Farrokhi D. G. +1 more
doaj

