Results 51 to 60 of about 263 (108)
Investigating the Properties and Dynamic Applications of Δh Legendre–Appell Polynomials
This research aims to introduce and examine a new type of polynomial called the Δh Legendre–Appell polynomials. We use the monomiality principle and operational rules to define the Δh Legendre–Appell polynomials and explore their properties.
Noor Alam +3 more
doaj +1 more source
Pattern Formation and Nonlinear Waves Close to a 1:1 Resonant Turing and Turing–Hopf Instability
ABSTRACT In this paper, we analyze the dynamics of a pattern‐forming system close to simultaneous Turing and Turing–Hopf instabilities, which have a 1:1 spatial resonance, that is, they have the same critical wave number. For this, we consider a system of coupled Swift–Hohenberg equations with dispersive terms and general, smooth nonlinearities.
Bastian Hilder, Christian Kuehn
wiley +1 more source
Abstract We analyse and clarify the finite‐size scaling of the weakly‐coupled hierarchical n$n$‐component |φ|4$|\varphi |^4$ model for all integers n≥1$n \ge 1$ in all dimensions d≥4$d\ge 4$, for both free and periodic boundary conditions. For d>4$d>4$, we prove that for a volume of size Rd$R^{d}$ with periodic boundary conditions the infinite‐volume ...
Emmanuel Michta +2 more
wiley +1 more source
Average‐Case Matrix Discrepancy: Satisfiability Bounds
ABSTRACT Given a sequence of d×d$$ d\times d $$ symmetric matrices {Wi}i=1n$$ {\left\{{\mathbf{W}}_i\right\}}_{i=1}^n $$, and a margin Δ>0$$ \Delta >0 $$, we investigate whether it is possible to find signs (ε1,…,εn)∈{±1}n$$ \left({\varepsilon}_1,\dots, {\varepsilon}_n\right)\in {\left\{\pm 1\right\}}^n $$ such that the operator norm of the signed sum ...
Antoine Maillard
wiley +1 more source
A Pure Dual Approach for Hedging Bermudan Options
ABSTRACT This paper develops a new dual approach to compute the hedging portfolio of a Bermudan option and its initial value. It gives a “purely dual” algorithm following the spirit of Rogers in the sense that it only relies on the dual pricing formula.
Aurélien Alfonsi +2 more
wiley +1 more source
Adjoint Appell-Euler and First Kind Appell-Bernoulli Polynomials [PDF]
The adjunction property, recently introduced for Sheffer polynomial sets, is considered in the case of Appell polynomials.
Natalini, Pierpaolo, Ricci, Paolo E.
core +1 more source
Parametric kinds of generalized Apostol-Bernoulli polynomials and their properties
The purpose of this paper is to define generalized Apostol--Bernoulli polynomials with including a new cosine and sine parametric type of generating function using the quasi-monomiality properties and trigonometric functions.
Kızılateş, Can +3 more
core
Moments, sums of squares, and tropicalization
Abstract We use tropicalization to study the duals to cones of nonnegative polynomials and sums of squares on a semialgebraic set S$S$. The truncated cones of moments of measures supported on the set S$S$ are dual to nonnegative polynomials on S$S$, while “pseudomoments” are dual to sums of squares approximations to nonnegative polynomials.
Grigoriy Blekherman +4 more
wiley +1 more source
New Bell–Sheffer Polynomial Sets
In recent papers, new sets of Sheffer and Brenke polynomials based on higher order Bell numbers, and several integer sequences related to them, have been studied. The method used in previous articles, and even in the present one, traces back to preceding
Pierpaolo Natalini, Paolo Emilio Ricci
doaj +1 more source
A Surrogate‐Based Adaptive Sampling Approach for Electromagnetic Problems
ABSTRACT Black‐box optimization problems arise in many real‐world applications, where the objective function is unknown or computationally expensive to evaluate. In electromagnetic engineering, optimization tasks often involve complex structures and materials, making direct analytical solutions infeasible. These problems are further complicated by high‐
Emmanouil Karantoumanis +2 more
wiley +1 more source

