Results 321 to 330 of about 7,721,674 (406)

Injectable Deep Eutectic Solvent‐Based Ionic Gel With Rapid Gelation and Broad Hemostatic Functionality

open access: yesAdvanced Healthcare Materials, EarlyView.
An injectable deep eutectic solvent‐based ionic gel is developed for rapid in situ gelation and broad‐spectrum hemostatic functionality. The material combines high mechanical strength, strong tissue adhesion, and antibacterial activity, demonstrating potential as an advanced biofunctional gel for emergency bleeding control and wound care.
Jia‐Yu Yang   +13 more
wiley   +1 more source

Assessing the impact of COVID-19 pandemic on all-cause mortality and child mortality in a population cohort of Iganga Mayuge HDSS in Eastern Uganda (2015-2021). [PDF]

open access: yesPopul Health Metr
Kajungu D   +8 more
europepmc   +1 more source

Body Biofluids for Minimally‐Invasive Diagnostics: Insights, Challenges, Emerging Technologies, and Clinical Potential

open access: yesAdvanced Healthcare Materials, EarlyView.
Recent advances in diagnostics have accelerated the development of miniaturized wearable technologies for the continuous monitoring of diseases. This paradigm is shifting healthcare away from invasive, centralized blood tests toward decentralized monitoring, using alternative body biofluids.
Lanka Tata Rao   +2 more
wiley   +1 more source

Engineering Complexity: Advances in 3D Breast Cancer Models for Precision Oncology

open access: yesAdvanced Healthcare Materials, EarlyView.
In vitro breast cancer models that closely mimic the complex biological and cellular interactions within the tumor microenvironment hold strong promise for enhancing our understanding of tumor progression, immune system behavior, and resistance to therapies, which are essential for developing personalized cancer treatments. Abstract Engineered in vitro
Wonwoo Jeong, Sang Jin Lee
wiley   +1 more source

3D Printing of Bacteriophage‐Loaded Hydrogels: Development of a Local and Long‐Lasting Delivery System

open access: yesAdvanced Healthcare Materials, EarlyView.
This research investigates the feasibility of 3D‐printing of a bacteriophage‐containing hydrogel made of alginate and methylcellulose. The printed hydrogels steadily release active bacteriophages for up to 35 days which is beneficial to treat implant‐associated infections.
Corina Vater   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy