Results 201 to 210 of about 129,554 (354)

Co‐Delivery of Ca‐MOF and Mg‐MOF Using Nanoengineered Hydrogels to Promote In Situ Mineralization and Bone Defect Repair: In Vitro and In Vivo Analysis

open access: yesAdvanced Healthcare Materials, EarlyView.
Metal‐organic frameworks (MOFs) have been synthesized using calcium (Ca‐MOF), magnesium (Mg‐MOF), and as hybrids (Ca/Mg‐MOF) for bone healing applications. MOFs are integrated into hydrogel polymer networks for injectable, sprayable, and coating applications.
Cho‐E Choi   +4 more
wiley   +1 more source

EFFECT OF NECK AND HEAD POSITIONING ON TRANSCRANIAL MAGNETIC STIMULATION MOTOR-EVOKED POTENTIALS

open access: bronze, 2001
J. P. Boucher   +3 more
openalex   +1 more source

Visible Light Induced DLP‐Printed Oxygen‐Releasing TPMS Scaffolds Mitigate Early Hypoxia in Bone Defects

open access: yesAdvanced Healthcare Materials, EarlyView.
Visible light‐induced digital light processing 3D printed Primitive‐triply periodic minimal surface hydrogels embed CaO2–Si core–shell nanoparticles to deliver short‐term oxygen during the avascular window. The scaffolds maintain cytocompatibility, elevate osteopontin in vitro, and enhance calvarial defect repair in vivo without toxicity.
Anastasia B. Timoshenko   +11 more
wiley   +1 more source

A Study on the Role of Intraoperative Corticobulbar Motor Evoked Potentials for Improving Safety of Cerebellopontine Angle Surgery in Elderly Patients. [PDF]

open access: yesDiagnostics (Basel), 2023
D'Alessandris QG   +10 more
europepmc   +1 more source

The Effects of Intrathecal Tramadol on Spinal Somatosensory-Evoked Potentials and Motor-Evoked Responses in Rats

open access: bronze, 2003
I‐Ming Jou   +4 more
openalex   +1 more source

Shedding Light on the Cellular Uptake Mechanisms of Bioactive Glass Nanoparticles as Controlled Intracellular Delivery Platforms: A Review of the Recent Literature

open access: yesAdvanced Healthcare Materials, EarlyView.
This review summarizes the main uptake pathways of bioactive glass nanoparticles (BGNs) and their intracellular localization, highlighting that BGNs are mainly internalized and entrapped within endosomes/lysosomes. Strategies for controlled intracellular ion release, with implications for targeted modulation of cell behavior, are discussed. The need to
Andrada‐Ioana Damian‐Buda   +1 more
wiley   +1 more source

Home - About - Disclaimer - Privacy