Results 31 to 40 of about 485,328 (331)

Concentration-compactness at the mountain pass level in semilinear elliptic problems

open access: yes, 2007
The concentration compactness framework for semilinear elliptic equations without compactness, set originally by P.-L.Lions for constrained minimization in the case of homogeneous nonlinearity, is extended here to the case of general nonlinearities in ...
TIntarev, Kyril
core   +2 more sources

GENERAL QUASILINEAR PROBLEMS INVOLVING \(p(x)\)-LAPLACIAN WITH ROBIN BOUNDARY CONDITION

open access: yesUral Mathematical Journal, 2020
This paper deals with the existence and multiplicity of solutions for a class of quasilinear problems involving \(p(x)\)-Laplace type equation, namely $$ \left\{\begin{array}{lll} -\mathrm{div}\, (a(| \nabla u|^{p(x)})| \nabla u|^{p(x)-2} \nabla u ...
Hassan Belaouidel   +2 more
doaj   +1 more source

Copper‐based Materials for Photo and Electrocatalytic Process: Advancing Renewable Energy and Environmental Applications

open access: yesAdvanced Functional Materials, EarlyView.
Cu‐based catalysts as a cornerstone in advancing sustainable energy technologies are fully reviewed in this manuscript, highlighting their potential in photo‐ and electrocatalysis. It includes metallic copper, copper oxides, copper sulfides, copper halide perovskites, copper‐based metal–organic frameworks (MOFs), and covalent organic frameworks (COFs),
Jéssica C. de Almeida   +16 more
wiley   +1 more source

Mountain pass solutions for nonlocal equations

open access: yesAnnales Academiae Scientiarum Fennicae Mathematica, 2014
In this paper, the authors study the following nonlocal Dirichlet problem: \[ \left\{\begin{aligned} &\left[M\Big(\int_{\Omega} |\nabla u(x)|^p\,dx\Big)\right]^{p-1}\Delta_pu = f(x,u) \quad \text{in } \Omega, \\ &u|_{\partial\Omega} =0, \end{aligned}\right.
Molica Bisci G, Radulescu V
openaire   +3 more sources

Nontrivial Solutions for Asymmetric Kirchhoff Type Problems

open access: yesAbstract and Applied Analysis, 2014
We consider a class of particular Kirchhoff type problems with a right-hand side nonlinearity which exhibits an asymmetric growth at +∞ and −∞ in ℝN(N=2,3). Namely, it is 4-linear at −∞ and 4-superlinear at +∞.
Ruichang Pei, Jihui Zhang
doaj   +1 more source

ГОРНЫЙ УДАР – ПРИЧИНА ВЫБРОСА МЕТАНА В УГОЛЬНОЙ ШАХТЕ?

open access: yesVestnik KRAUNC: Fiziko-Matematičeskie Nauki, 2015
Предложена модель, в которой горный удар (техногенное землетрясение) – представлен как выход ударной волны на внутреннюю стенку шахты. При этом возникает волна разгрузки, растяжения, двигающаяся в обратном (вглубь стенки) направлении.
В.В.Кузнецов, V.V. Kuznetsov
doaj   +1 more source

Microbubble Shell Stiffness Engineering Enhances Ultrasound Imaging, Drug Delivery, and Sonoporation

open access: yesAdvanced Materials, EarlyView.
 Shell‐engineered poly(alkyl cyanoacrylate) microbubbles with tunable stiffness improve ultrasound imaging and therapy. Adjusting the length of the alkyl chain and the glass transition temperature maintains a narrow microbubble size distribution while enhancing drug loading, sonoporation and the acoustic response.
Roman A. Barmin   +30 more
wiley   +1 more source

A Mountain Pass for Reacting Molecules [PDF]

open access: yesAnnales Henri Poincaré, 2004
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
openaire   +3 more sources

The existence and multiplicity of L 2-normalized solutions to nonlinear Schrödinger equations with variable coefficients

open access: yesAdvanced Nonlinear Studies
The existence of L 2–normalized solutions is studied for the equation −Δu+μu=f(x,u)  inRN,∫RNu2dx=m. $-{\Delta}u+\mu u=f\left(x,u\right)\quad \quad \text{in} {\mathbf{R}}^{N},\quad {\int }_{{\mathbf{R}}^{N}}{u}^{2} \mathrm{d}x=m.$ Here m > 0 and f(x, s)
Ikoma Norihisa, Yamanobe Mizuki
doaj   +1 more source

On the existence of solutions for a boundary value problem on the half-line

open access: yesElectronic Journal of Qualitative Theory of Differential Equations, 2018
In this note we consider Dirichlet boundary value problem on a half line. Using critical point theory we prove the existence of at least one nontrivial solution.
Marek Galewski   +2 more
doaj   +1 more source

Home - About - Disclaimer - Privacy