Superlinear perturbations of a double‐phase eigenvalue problem
Abstract We consider a perturbed version of an eigenvalue problem for the double‐phase operator. The perturbation is superlinear, but need not satisfy the Ambrosetti–Robinowitz condition. Working on the Sobolev–Orlicz space W01,η(Ω)$ W^{1,\eta }_{0}(\Omega)$ with η(z,t)=α(z)tp+tq$ \eta (z,t)=\alpha (z)t^{p}+t^{q}$ for 1
Yunru Bai +2 more
wiley +1 more source
Normalized solutions of the critical Schrödinger–Bopp–Podolsky system with logarithmic nonlinearity
Abstract In this paper, we study the following critical Schrödinger–Bopp–Podolsky system driven by the p$p$‐Laplace operator and a logarithmic nonlinearity: −Δpu+V(εx)|u|p−2u+κϕu=λ|u|p−2u+ϑ|u|p−2ulog|u|p+|u|p*−2uinR3,−Δϕ+a2Δ2ϕ=4π2u2inR3.$$\begin{equation*} {\begin{cases} -\Delta _p u+\mathcal {V}(\varepsilon x)|u|^{p-2}u+\kappa \phi u=\lambda |u|^{p-2 ...
Sihua Liang +3 more
wiley +1 more source
Multiple solutions for Schrodinger-Maxwell systems with unbounded and decaying radial potentials
This article concerns the nonlinear Schrodinger-Maxwell system $$\displaylines{ -\Delta u +V(|x|)u +Q(|x|)\phi u=Q(|x|) f(u),\quad \hbox{in } \mathbb{R}^3\cr -\Delta \phi =Q(|x|) u^{2}, \quad \hbox{in } \mathbb{R}^3 }$$ where V and Q are unbounded ...
Fangfang Liao +2 more
doaj
Non‐Hermitian Topological Lattice Photonics: An Analytic Perspective
This review establishes exact analytical solutions for non‐Hermitian Hatano–Nelson, Su–Schrieffer–Heeger, and generalized Rice–Mele models. We demonstrate non‐Hermitian skin effects via point‐gap topology, hybrid skin‐topological edge states in 2D lattices, and spin‐polarized boundary modes governed by dual bulk‐boundary correspondence.
Shihua Chen +6 more
wiley +1 more source
On Neumann hemivariational inequalities
We derive a nontrivial solution for a Neumann noncoercive hemivariational inequality using the critical point theory for locally Lipschitz functionals. We use the Mountain-Pass theorem due to Chang (1981).
Halidias Nikolaos
doaj +1 more source
Kinematic Limit Analysis of Roof Stability for Elliptical Tunnels in Rock Masses
ABSTRACT Noncircular cross‐sections are commonly encountered in engineering practice; however, primary attempts to analyze roof stability have focused on circular and rectangular configurations. This study investigates the roof stability of elliptical tunnels with varying aspect ratios, employing two semi‐analytical approaches: piecewise linear and ...
Tae‐Won Seo, Dowon Park
wiley +1 more source
Multiple Solutions for a Critical Steklov Kirchhoff Equation
In the present work, we study some existing results related to a new class of Steklov p(x)-Kirchhoff problems with critical exponents. More precisely, we propose and prove some properties of the associated energy functional. In the first existence result,
Maryam Ahmad Alyami, Abdeljabbar Ghanmi
doaj +1 more source
Multiple Solutions for Nonhomogeneous Neumann Differential Inclusion Problems by the p(x)-Laplacian
A class of nonlinear Neumann problems driven by p(x)-Laplacian with a nonsmooth locally Lipschitz potential (hemivariational inequality) was considered. The approach used in this paper is the variational method for locally Lipschitz functions.
Qing-Mei Zhou
doaj +1 more source
Sequences of weak solutions for fractional equations [PDF]
This work is devoted to study the existence of infinitely many weak solutions to nonlocal equations involving a general integrodifferential operator of fractional type.
Bisci, Giovanni Molica
core
Barriers of the McKean–Vlasov energy via a mountain pass theorem in the space of probability measures [PDF]
Rishabh S. Gvalani, André Schlichting
openalex +1 more source

