Results 81 to 90 of about 103,089 (229)

Patterning the Void: Combining L‐Systems with Archimedean Tessellations as a Perspective for Tissue Engineering Scaffolds

open access: yesAdvanced Functional Materials, EarlyView.
This study introduces a novel multi‐scale scaffold design using L‐fractals arranged in Archimedean tessellations for tissue regeneration. Despite similar porosity, tiles display vastly different tensile responses (1–100 MPa) and deformation modes. In vitro experiments with hMSCs show geometry‐dependent growth and activity. Over 55 000 tile combinations
Maria Kalogeropoulou   +4 more
wiley   +1 more source

Matrix dominated stress/strain behavior in polymeric composites: Effects of hold time, nonlinearity and rate dependency [PDF]

open access: yes
In order to understand matrix dominated behavior in laminated polymer matrix composites, an elastic/viscoplastic constitutive model was developed and used to predict stress strain behavior of off-axis and angle-ply symmetric laminates under in-plane ...
Gates, Thomas S.
core   +1 more source

Modulating Electrochemical CO2 Reduction Pathways via Interfacial Electric Field

open access: yesAdvanced Functional Materials, EarlyView.
Engineering interfacial electric fields in Cu/ITO electrodes enables precise control of CO2 reduction pathways. Charge transfer from Cu to ITO generates positively charged Cu species that steer selectivity from ethylene toward methane. This work demonstrates how interfacial electric‐field modulation can direct reaction intermediates and transform ...
Mahdi Salehi   +7 more
wiley   +1 more source

CO2 Reduction on Copper‐Nitrogen‐Doped Carbon Catalysts Tuned by Pulsed Potential Electrolysis: Effect of Pulse Potential

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates that pulsed potential electrolysis significantly improves CO2 reduction performance on copper‐nitrogen doped carbon electrodes. The formation of cationic copper sites and metallic clusters as a function of applied intermittent potential leads to notable selectivity changes compared to potentiostatic reduction.
Dorottya Hursán   +13 more
wiley   +1 more source

Electroactive Metal–Organic Frameworks for Electrocatalysis

open access: yesAdvanced Functional Materials, EarlyView.
Electrocatalysis is crucial in sustainable energy conversion as it enables efficient chemical transformations. The review discusses how metal–organic frameworks can revolutionize this field by offering tailorable structures and active site tunability, enabling efficient and selective electrocatalytic processes.
Irena Senkovska   +7 more
wiley   +1 more source

Fiber metal laminates for high strain rate applications with layerwise shock impedance tuning. [PDF]

open access: yesSci Rep, 2023
Pai A   +6 more
europepmc   +1 more source

Photoswitching Conduction in Framework Materials

open access: yesAdvanced Functional Materials, EarlyView.
This mini‐review summarizes recent advances in state‐of‐the‐art proton and electron conduction in framework materials that can be remotely and reversibly switched on and off by light. It discusses the various photoswitching conduction mechanisms and the strategies employed to enhance photoswitched conductivity.
Helmy Pacheco Hernandez   +4 more
wiley   +1 more source

Multiple impact effects of helium-driven shocks on thin fiber-metal laminates. [PDF]

open access: yesSci Rep, 2023
Pai A   +3 more
europepmc   +1 more source

Reevaluating the Activity of ZIF‐8 Based FeNCs for Electrochemical Ammonia Production

open access: yesAdvanced Functional Materials, EarlyView.
Though receiving much attention, the field of electrochemical nitrogen reduction reaction (eNRR) to ammonia is marked by doubts about whether this reaction is possible in aqueous media. This work sheds light on this question for iron single‐atom on N‐doped carbon (FeNC) catalysts—a class of well‐known catalysts that is also worth testing for the sister
Caroline Schneider   +6 more
wiley   +1 more source

Smart, Bio‐Inspired Polymers and Bio‐Based Molecules Modified by Zwitterionic Motifs to Design Next‐Generation Materials for Medical Applications

open access: yesAdvanced Functional Materials, EarlyView.
Bio‐based and (semi‐)synthetic zwitterion‐modified novel materials and fully synthetic next‐generation alternatives show the importance of material design for different biomedical applications. The zwitterionic character affects the physiochemical behavior of the material and deepens the understanding of chemical interaction mechanisms within the ...
Theresa M. Lutz   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy