Thermally Induced Gelling Systems Based on Patchy Polymeric Micelles
A novel strategy to design thermally induced gelling systems with tunable material properties is reported. Polymeric mixed‐shell micelles displaying multiple thermosensitive patchy domains formed hydrogels by assembling into well‐entangled worm‐like network structures upon heating to body temperature. The patchy micelle design significantly affects the
Binru Han +9 more
wiley +1 more source
3D Printed Ultra‐Fast Plastic Scintillators Based on Perovskite‐Photocurable Polymer Composite
The demand for radiation detection is increasing in a number of fields, including high‐energy physics, medical imaging, and homeland security. This study serves to demonstrate the potential for the fabrication of fast perovskite‐based scintillators with complex shapes via stereolithographic additive manufacturing, representing a new path toward the ...
Antonella Giuri +16 more
wiley +1 more source
This study examines how manufacturing uncertainties in Curie temperatures (1.5–2°C) affect multilayer active magnetic regenerators (AMR). While increasing the number of magnetocaloric layers boosts cooling power, performance degrades due to temperature variations.
Urban Tomc +6 more
wiley +1 more source
This study presents novel anti‐counterfeiting tags with multilevel security features that utilize additional disguise features. They combine luminescent nanosized Ln‐MOFs with conductive polymers to multifunctional mixed‐matrix membranes and powder composites. The materials exhibit visible/NIR emission and matrix‐based conductivity even as black bodies.
Moritz Maxeiner +9 more
wiley +1 more source
Synchrotron Radiation for Quantum Technology
Materials and interfaces underpin quantum technologies, with synchrotron and FEL methods key to understanding and optimizing them. Advances span superconducting and semiconducting qubits, 2D materials, and topological systems, where strain, defects, and interfaces govern performance.
Oliver Rader +10 more
wiley +1 more source
P. C. Roberts Multiplicities and Chern Classes in local algebra (Cambridge Tracts in Mathematics no. 133, Cambridge, 1998), xi + 303 pp., 0 521 47316 0 (hardback), £37.50 (US$59.95). [PDF]
Liam O’Carroll
openalex +1 more source
Enhancing Low‐Temperature Performance of Sodium‐Ion Batteries via Anion‐Solvent Interactions
DOL is introduced into electrolytes as a co‐solvent, increasing slat solubility, ion conductivity, and the de‐solvent process, and forming an anion‐rich solvent shell due to its high interaction with anion. With the above virtues, the batteries using this electrolyte exhibit excellent cycling stability at low temperatures. Abstract Sodium‐ion batteries
Cheng Zheng +7 more
wiley +1 more source
The Noble Family as “Singular Multiplicity”? Redefining the Smoczynski–Zarycki’s Totemic Definition of Nobility through the Lenses of Alain Badiou’s Mathematical Ontology [PDF]
Urszula Idziak, Bartosz Piotr Bednarczyk
openalex +1 more source
Martingale representations in dynamic enlargement setting: the role of the accessible jump times
Let M and N be an F-martingale and an H-martingale respectively on the same probability space, both enjoying the predictable representation property. We discuss how, under the assumption of the existence of an equivalent decoupling measure for F and H ...
Calzolari, Antonella, Torti, Barbara
core
MXene dervied CoFe composites show increased initial Oxygen Evolution Reaction (OER) activity compared to the pure CoFe and MXene in an Anion Exchange Membrane device. Vanadium vacancies in the MXene plays a role in increased OER activity and hinders Fe leaching in the AEM device over using the pure V2C MXene as a support material for the CoFe ...
Can Kaplan +16 more
wiley +1 more source

