Results 191 to 200 of about 43,839 (225)
Some of the next articles are maybe not open access.

Convex multiresolution analysis

Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96), 1998
A standard wavelet multiresolution analysis can be defined via a sequence of projection operators onto a monotone sequence of closed vector subspaces possessing suitable invariance properties. We propose an extension of this framework in which the linear projection operators are replaced by nonlinear retractions onto convex sets.
P.L. Combettes, J.-C. Pesquet
openaire   +1 more source

Wavelets with Frame Multiresolution Analysis

Journal of Fourier Analysis and Applications, 2003
Let \(A\) be a \(d\times d\) real expansive matrix, i.e., a matrix whose eigenvalues are all of modulus greater than 1. Then a function \(\psi \in L^2(\mathbb{R}^d)\) is an \(A\)-\textit{dilation wavelet} if the system \(|\text{det} A|^{n/2} \psi (A^n x - l)\), \(n\in \mathbb{Z}\), \(l\in \mathbb{Z}^d\), forms an orthonormal basis for \(L^2(\mathbb{R ...
Dai, X., Diao, Y., Gu, Q., Han, D.
openaire   +3 more sources

Multiresolution Analysis and Supercompact Multiwavelets

SIAM Journal on Scientific Computing, 2000
Summary: The Haar wavelets can represent exactly any piecewise constant function. The motivation for the present development is Alpert's family of compact orthogonal multiwavelets that can represent exactly any piecewise polynomial function. We choose to derive the algorithm in the style and notation of Harten's multiresolution analysis as extended to ...
Beam, Richard M., Warming, Robert F.
openaire   +1 more source

Color Quantization by Multiresolution Analysis

2009
A color quantization method is presented, which is based on the analysis of the histogram at different resolutions computed on a Gaussian pyramid of the input image. Criteria based on persistence and dominance of peaks and pits of the histograms are introduced to detect the modes in the histogram of the input image and to define the reduced colormap ...
Ramella G, Sanniti di Baja G
openaire   +2 more sources

Multiresolution Analysis for Image Compression

2006
With the advent of the multimedia era and the growth of digital packet networks, the total amount of image data accessed and exchanged by users daily has reached the huge value of several petabytes. Therefore, the compression of continuous-tone still images, either grayscale or color, has grown tremendously in importance.
ALPARONE, LUCIANO   +2 more
openaire   +3 more sources

Smooth Multiresolution Analysis

2002
The axiomatic framework of multiresolution analysis is Fourier analysis in L 2, and the convergence of the wavelet expansion is therefore in the L 2-norm. The smoothness properties of the scaling function and of the mother wavelet are, however, of great interest to obtain fast L 2-convergence of the wavelet expansion, or to obtain pointwise convergence
openaire   +1 more source

About Nonstationary Multiresolution Analysis and Wavelets

Results in Mathematics, 2011
Let \(\psi^{(j)} \in L^2(\mathbb R)\) and \(\psi_{j,k} = 2^{j/2}\,\psi^{(j)}(2^j\cdot -k)\) for \(j,k\in \mathbb Z\) be given. In the nonstationary case, \(\psi^{(j)}\) are called mother wavelets, if \(\{\psi_{j,k};\,j,k\in \mathbb Z\}\) is an orthonormal basis of \(L^2(\mathbb R)\).
Bastin, Françoise, Simons, Laurent
openaire   +1 more source

Wavelets and Mallat's Multiresolution Analysis

Fundamenta Informaticae, 1998
We present a simple proof of Mallat's theorem about wavelet and multiresolution analysis. We do not use Fourier transform and the proof is accesible even for younger undergraduate students.
openaire   +2 more sources

Multiresolution Analysis of Connectivity

2005
Multiresolution histograms have been used for indexing and retrieval of images. Multiresolution histograms used traditionally are 2d-histograms which encode pixel intensities. Earlier we proposed a method for decomposing images by connectivity. In this paper, we propose to encode centroidal distances of an image in multiresolution histograms; the image
Atul Sajjanhar   +3 more
openaire   +1 more source

Wavelets; Multiresolution Analysis

2016
It has been shown in Chap. 12 on time-frequency analysis that how decomposition on a wavelet basis allows highlighting effectively changes with time of the properties of a signal. Wavelet bases with compact support, which could be used by simple filtering operations, have been searched.
openaire   +1 more source

Home - About - Disclaimer - Privacy