Results 1 to 10 of about 911 (67)

Multivalued Pseudo-Picard Operators and Fixed Point Results [PDF]

open access: yesJournal of Function Spaces and Applications, 2013
We introduce the concept of multivalued pseudo-Picard (MPP) operator on a metric space. This concept is weaker than multivalued weakly Picard (MWP) operator, which is given by M. Berinde and V. Berinde (2007).
Gülhan Mınak, Özlem Acar, Ishak Altun
doaj   +2 more sources

A new approach to multivalued nonlinear weakly Picard operators [PDF]

open access: yesJournal of Inequalities and Applications, 2019
The notion of nonlinear (Fs,L) $(\mathcal{F}_{s}, \mathcal{L})$-contractive multivalued operators is initiated and some related fixed point results are considered. We also give an example to show the validity of obtained theoretical results.
Aiman Mukheimer   +5 more
doaj   +2 more sources

Multivalued weakly Picard operators via simulation functions with application to functional equations

open access: yesAIMS Mathematics, 2021
The aim of this paper is to introduce the notion of Suzuki type multivalued contraction with simulation functions and then to set up some new fixed point and data dependence results for these type of contraction mappings. We produce an example to support
Azhar Hussain   +3 more
doaj   +3 more sources

Krasnoselskii's theorem in generalized Banach spaces and application [PDF]

open access: yesElectronic Journal of Qualitative Theory of Differential Equations, 2012
The purpose of this paper is to extend Krasnoselskii's fixed point theorem to the case of generalized Banach spaces for singlevalued and multivalued operators.
I. R. Petre, Adrian Petrusel
doaj   +3 more sources

Ulam Stability for Partial Fractional Differential Inclusions via Picard Operators Theory [PDF]

open access: yesElectronic Journal of Qualitative Theory of Differential Equations, 2014
In the present paper, we investigate, using the Picard operator technique, some existence and Ulam type stability results for the Darboux problem associated to some partial fractional order differential inclusions.
Said Abbas   +2 more
doaj   +4 more sources

Weakly Picard pairs of some multivalued operators [PDF]

open access: yesMathematical Communications, 2003
The purpose of this paper is to present a partial answer to the following problem: Let \((X,d)\) be a metric space and \(T_1, T_2: X\to P(X)\) two multivalued operators. Determine the metric conditions which imply that \((T_1, T_2)\) is a weakly Picard pair of multivalued operators and \(T_1, T_2\) are weakly Picard multivalued operators.
A. Sîntărian
openaire   +4 more sources

Fixed points for multivalued contractions on a metric space [PDF]

open access: yesSurveys in Mathematics and its Applications, 2010
The purpose of this paper is to prove a fixed point theorem for multivalued operators and a fixed point theorem for multivalued weakly Picard operators in the terms of τ -distance.
Liliana Guran
doaj   +2 more sources

A new perspective for multivalued weakly Picard operators [PDF]

open access: yesPublications de l'Institut Mathematique, 2017
This research contains some recent developments about multivalued weakly Picard operators on complete metric spaces. In addition, taking into account both multivalued ?-contraction and almost contraction on complete metric spaces, we present a new perspective for multivalued weakly Picard operators.
Durmaz, Gonca, Altun, Ishak
openaire   +6 more sources

Data Dependence, Strict Fixed Point Results, and Well-Posedness of Multivalued Weakly Picard Operators [PDF]

open access: yesJournal of Mathematics, 2021
In this paper, we introduce the notion of s , r -contractive multivalued weakly Picard ...
Azhar Hussain   +3 more
openaire   +3 more sources

On multivalued weakly Picard operators in partial Hausdorff metric spaces [PDF]

open access: yesFixed Point Theory and Applications, 2015
AbstractWe discuss multivalued weakly Picard operators on partial Hausdorff metric spaces. First, we obtain Kikkawa-Suzuki type fixed point theorems for a new type of generalized contractive conditions. Then, we prove data dependence of a fixed points set theorem.
Jleli, Mohamed   +3 more
openaire   +4 more sources

Home - About - Disclaimer - Privacy