Results 91 to 100 of about 149,278 (309)
Soft multimaterial optical fibers integrate multiple functionalities—such as waveguiding, side emission, sensing, drug delivery or actuation—into a single filament for wearable, implantable, and tissue‐integrated devices for diagnostics and phototherapy.
Zahra Kafrashian +2 more
wiley +1 more source
Development of Heat Engines Powered by Twisted and Coiled Polymer Fiber Actuators
Continuously rotating engines driven by thermally responsive actuating materials can turn waste heat into useful energy. For the first time heat engines operated by twisted and coiled polymer fiber actuators are demonstrated with engine design guided by two simple analytical models.
Geoffrey M. Spinks +2 more
wiley +1 more source
A soft robotic simulator is developed to replicate the digital removal of feces (DRF), a sensitive yet essential nursing procedure. Integrating soft actuators, sensors, and a realistic rectal model, the simulator balances functional fidelity with perceptual realism. Engineering evaluations and nurse feedback confirm its potential to enhance training in
Shoko Miyagawa +10 more
wiley +1 more source
Background: Sugamadex (Bridion) is a new drug that neutralizes neuromuscular block caused by amniosteroidal muscle relaxants. The data about exact dosage of sugamadex for routine neutralization of neuromuscular block caused by vecuronium is scarce as the
Blaž Peček, Damjan Polh, Tea Priman
doaj
A novel carbon fiber reinforcement for dielectric elastomer actuators enhances actuation force while decoupling electromechanical performance from the actuator's aspect ratio. Unlike conventional fiber reinforcements, it enables a uniform planar stretch state along the entire actuator.
Markus Koenigsdorff +8 more
wiley +1 more source
Flexible Sensor‐Based Human–Machine Interfaces with AI Integration for Medical Robotics
This review explores how flexible sensing technology and artificial intelligence (AI) significantly enhance human–machine interfaces in medical robotics. It highlights key sensing mechanisms, AI‐driven advancements, and applications in prosthetics, exoskeletons, and surgical robotics.
Yuxiao Wang +5 more
wiley +1 more source
Recent Advances in Variable‐Stiffness Robotic Systems Enabled by Phase‐Change Materials
Phase‐change materials (PCMs), such as shape memory alloys, hydrogels, shape memory polymers, liquid crystal elastomers, and low‐melting‐point alloys, are driving advancements in stiffness‐tunable robotic systems across a wide range of applications. This review highlights recent progress in PCM‐enabled robotics, focusing on their underlying mechanisms,
Sukrit Gaira +5 more
wiley +1 more source
Collision‐Resilient Winged Drones Enabled by Tensegrity Structures
Based on structures of birds such as the woodpeck, this article presents the collision‐resilient aerial robot, SWIFT. SWIFT leverages tensegrity structures in the fuselage and wings which allow it to undergo large deformations in a crash, without sustaining damage. Experiments show that SWIFT can reduce impact forces by 70% over conventional structures.
Omar Aloui +5 more
wiley +1 more source
Liquid Metal Sensors for Soft Robots
This review thoroughly reviews liquid metal sensors in soft robots. Their unique material properties like high conductivity and good biocompatibility are analyzed. Working principles are classified, and applications in environmental perception, motion detection, and human—robot interaction are introduced.
Qi Zhang +7 more
wiley +1 more source

