Results 181 to 190 of about 1,869,696 (352)
Determining mutational burden and signature using RNA-seq from tumor-only samples [PDF]
Erik Jessen +4 more
openalex +1 more source
Metformin mediates mitochondrial quality control in Leber's hereditary optic neuropathy (LHON) fibroblasts carrying mtDNA mutations. At therapeutic levels, metformin activates AMPK signaling to restore mitochondrial dynamics by promoting fusion and restraining fission, while preserving mitochondrial mass, enhancing autophagy/mitophagy and biogenesis ...
Chatnapa Panusatid +3 more
wiley +1 more source
Clinical analysis reveals significant dysregulation of FGFRL1 in esophageal cancer (EC) patients. RNAi‐coupled next‐generation sequencing (NGS) and in vitro study reveal FGFRL1‐mediated EC progression via EMT, PI3K/Akt, and Notch pathways. Functional assays confirm its role in tumor growth, migration, and invasion.
Aprajita Srivastava +3 more
wiley +1 more source
KLK7, a tissue kallikrein‐related peptidase, is elevated in advanced colorectal cancer and associated with shorter survival. High KLK7 levels in ascites correlate with peritoneal metastasis. In mice, KLK7 overexpression increases metastasis. In vitro, KLK7 enhances cancer cell proliferation, migration, adhesion, and spheroid formation, driving ...
Yosr Z. Haffani +6 more
wiley +1 more source
Relating mutational signature exposures to clinical data in cancers via signeR 2.0. [PDF]
Drummond RD +6 more
europepmc +1 more source
BMI‐1 modulation and trafficking during M phase in diffuse intrinsic pontine glioma
The schematic illustrates BMI‐1 phosphorylation during M phase, which triggers its translocation from the nucleus to the cytoplasm. In cycling cells, BMI‐1 functions within the PRC1 complex to mediate H2A K119 monoubiquitination. Following PTC596‐induced M phase arrest, phosphorylated BMI‐1 dissociates from PRC1 and is exported to the cytoplasm via its
Banlanjo Umaru +6 more
wiley +1 more source
The Aging Blood: Cellular Origins, Circulating Drivers, and Therapeutic Potential
As a conduit linking all organs, the blood system both reflects and actively drives systemic aging. This review highlights how circulating pro‐aging and antiaging factors and age‐associated hematopoietic stem cell dysfunction contribute to immunosenescence and multi‐organ decline, positioning the hematopoietic system as a target for aging intervention.
Hanqing He, Jianwei Wang
wiley +1 more source
BackgroundFAT atypical cadherin 1 (FAT1) is a well-known tumor regulator that plays a crucial role in multiple cancer signaling pathways. Its mutations have been linked to tumor progression and immune regulation in various cancers, including lung ...
Lifeng Gao +6 more
doaj +1 more source

