Results 271 to 280 of about 610,660 (309)

A Functional 2D Carbon Allotrope Combining Nanoporous Graphene and Biphenylene Segments

open access: yesAdvanced Materials, EarlyView.
The synthesis of a novel nanoporous graphene (NPG) is reported with biphenylene segments via thermal fusion of 12‐armchair porous graphene nanoribbons grown on gold surfaces. Characterization using STM, AFM, and DFT reveals low‐defect semiconducting behaviour and tunable band gaps.
Paula Angulo‐Portugal   +14 more
wiley   +1 more source

Review of Thin Lithium Metal Battery Anode Fabrication – Microstructure – Electrochemistry Relations

open access: yesAdvanced Materials, EarlyView.
Thin, lightweight lithium‐metal anodes are pivotal for practical high‐energy batteries. This review surveys processing routes that convert diverse Li precursors, e.g., ingots, melts, solutions, and vapor, into Li‐rich foils with controlled thickness, areal density, and tailored functionality.
Yuhang Hu   +6 more
wiley   +1 more source

Giant Berry‐phase‐Driven X‐Ray Beam Translations in Strain‐Engineered Semiconductor Crystals

open access: yesAdvanced Materials, EarlyView.
Due to the Berry‐phase effect, X‐rays propagating in deformed crystals undergo large translations, interesting for X‐ray optics applications. Here, the lattice expansion observed upon H irradiation of dilute‐nitride semiconductors is exploited to engineer the deformation landscape of selectively hydrogenated GaAsN epilayers.
Marco Felici   +9 more
wiley   +1 more source

Atomistic Mechanisms Triggered by Joule Heating Effects in Metallic Cu‐Bi Nanowires for Spintronics

open access: yesAdvanced Materials, EarlyView.
Bi doped metallic Cu nanowires are promising for spintronics thanks to the stabilization of a giant spin Hall effect. However, heat resulting from current injection forces Bi to leave solution, forcing segregation into monoatomic decorations which evolve into coherent crystalline aggregates.
Alejandra Guedeja‐Marrón   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy