Results 191 to 200 of about 511,017 (319)

Enhanced Magnetization Switching Efficiency via Orbital‐Current‐Induced Torque in Ti/Ta (Pt)/CoFeB/MgO Structures

open access: yesAdvanced Functional Materials, EarlyView.
The orbital‐current‐induced torque is investigated as an efficient method for controlling magnetization direction. By introducing Ti as an orbital current source in Ti/Ta (or Pt)/CoFeB/MgO structures, the switching current is reduced by ∼25% compared to a conventional spin‐orbit torque structure of Ta/CoFeB/MgO.
So y. Shin   +3 more
wiley   +1 more source

Nanotechnology Instrumentation

open access: yesMeasurement + Control, 1991
D J Whitehouse
doaj   +1 more source

Advancements in Agricultural Nanotechnology: An Updated Review. [PDF]

open access: yesPlants (Basel)
Pagano M   +5 more
europepmc   +1 more source

Strategies to Design and Optimize Artificial Antigen‐Presenting Cells for T Cell Expansion in Cancer Immunotherapy

open access: yesAdvanced Functional Materials, EarlyView.
This review highlights recent advances in engineering artificial antigen‐presenting cells (aAPCs) as alternatives to dendritic cells for T cell expansion. Key design principles inspired by the immunological synapse are discussed, with emphasis on strategies for polyclonal and antigen‐specific T cell expansion.
Nguyen Thi Nguyen, Yu Seok Youn
wiley   +1 more source

Intramolecular Down‐ and Up‐Conversion in Dimeric Tetracene Complexes Centered via Platinum(II) and Palladium(II)

open access: yesAdvanced Functional Materials, EarlyView.
Metal‐tetracene dimeric complexes are synthesized through the pyridyl coordination to either Pt(II) or Pd(II). Photophysical properties are systematically compared as a function of the metal using steady‐state and time‐resolved spectroscopy. The Pt(II) dimer exhibits efficient intramolecular singlet fission and subsequent intramolecular up‐conversion ...
Yifan Bo   +4 more
wiley   +1 more source

High‐Entropy Magnetism of Murunskite

open access: yesAdvanced Functional Materials, EarlyView.
The study of murunskite (K2FeCu3S4) reveals that its magnetic and orbital order emerges in a simple I4/mmm crystal structure with complete disorder in the transition metal positions. Mixed‐valence Fe ions randomly occupy 1/4 of the tetrahedral sites, with the remaining 3/4 being filled by non‐magnetic Cu+ ions.
Davor Tolj   +18 more
wiley   +1 more source

Home - About - Disclaimer - Privacy