Results 131 to 140 of about 2,746,164 (341)
A comparative study of the effect of magnesium oxide and calcium carbonate as support material in the synthesis of carbon nanotubes using the catalyst Fe/Co is presented.
Ezekiel D. Dikio+2 more
doaj +1 more source
We study theoretically the electrical transport between aligned carbon nanotubes in nanotube ropes, and between shells in multiwall carbon nanotubes.
K. Schönhammer+5 more
core +1 more source
Engineering Strategies for 2D Layered Tin Halide Perovskite Field‐Effect Transistors
2D halide perovskites are promising candidates for field‐effect transistor (FET) applications due to their high stability and suppressed ion migration in the presence of bulky organic spacers. This review systematically summarizes the optimization engineering strategies of 2D perovskite FETs and future challenges, which provide guidance for developing ...
Shuanglong Wang+4 more
wiley +1 more source
Tweaking the properties of carbon nanotubes is a prerequisite for their practical applications. Here we demonstrate fine-tuning the electronic properties of single-wall carbon nanotubes via filling with ferrocene molecules.
A. Grüneis+11 more
core +1 more source
Poly(heptazine) imides (PHIs), a crystalline carbon nitride subclass, intercalate metals to deliver high stability, tunable electronics, and efficient charge separation. These features enable solar‐driven applications such as hydrogen evolution, CO₂ reduction, and organic synthesis.
Gabriel A. A. Diab+6 more
wiley +1 more source
Molecular Dynamics Study of Bamboo-like Carbon Nanotube Nucleation
MD simulations based on an empirical potential energy surface were used to study the nucleation of bamboo-like carbon nanotubes (BCNTs). The simulations reveal that inner walls of the bamboo structure start to nucleate at the junction between the outer ...
A. Thess+25 more
core +1 more source
The coherent heterostructure and the strong stress field at the heterointerface upshift the d‐band center of vanadium toward the Fermi level, which effectively lowers the Na+ diffusion barrier, facilitates charge transfer and accelerates reaction kinetics.
Xuexia Song+11 more
wiley +1 more source
This study explores the use of fluorinated copolymers with varying fluorophilic side chain lengths to enhance PFAS affinity. The integration of electrochemical techniques demonstrates enhanced adsorbent regeneration, with molecular dynamics simulations providing insight into the molecular‐level interactions involved.
Anaira Román Santiago+7 more
wiley +1 more source
Nalinikanth Kotagiri,1–4 Jin-Woo Kim1–31Bio/Nano Technology Laboratory, Institute for Nanoscience and Engineering, 2Department of Biological and Agricultural Engineering, 3Cell and Molecular Biology Graduate Program, University of Arkansas ...
Kotagiri N, Kim J-W
doaj
To enhance the sustainability of electrochemical separations for resource recovery, a photoelectrochemical ion recovery system is developed that utilizes renewable solar energy. A composite integrating titianium dioxide nanorods and a redox‐copolymer enables spontaneous cation adsorption and light‐activated redox reactions for regeneration, thus ...
Ki‐Hyun Cho+3 more
wiley +1 more source