Results 111 to 120 of about 20,155 (149)
This study demonstrates coherent control of 15N nuclear spins coupled to VB−${\text{V}}_{\text{B}}^{-}$ centers in isotope‐enriched hexagonal boron nitride. Selective addressing via spin‐state mixing enables Rabi driving, quantum gates, and coherence times exceeding 10 μs$\umu{\rm s}$.
Adalbert Tibiássy +6 more
wiley +1 more source
It is elucidated that phase engineering of cobalt modulates the interfacial potential gradients of cobalt–carbon electrocatalysts, enhancing the intrinsic electrocatalytic performance. Modulating the dominant crystalline phase of cobalt from a hexagonal close‐packed to a face‐centered cubic enriches the electron density of carbon shells, thereby ...
Ji‐Oh Kim +13 more
wiley +1 more source
An optimized carbon host nanostructure enables a dual‐interface‐dominant architecture in sulfur cathodes of solid‐state Li‐S batteries by selectively forming sulfur|carbon and sulfur|solid electrolyte interfaces. This tailored interfacial configuration accelerates sulfur redox kinetics by establishing enriched Li+/e– transport networks, while ...
Zhao Yang +13 more
wiley +1 more source
Dual‐Ligand Metal‐Organic Frameworks via In Situ Amidoxime Engineering for Selective Ion Separation
Inspired by microbial ion‐trapping mechanisms, a mild and universal strategy is developed to construct highly porous amidoxime‐functionalized MOFs. DFT calculations and molecular force measurements reveal that the dual‐ligand amidoxime configuration significantly strengthens Ga(III) affinity.
Zhifang Lv +9 more
wiley +1 more source
A circular route, involving upcycling of waste surgical masks, affords a Mn‐based layered carbide with porosity, redox activity and low work function. These features enable its effective operation as positive supercapacitor electrode in an aqueous asymmetric supercapacitor delivering 213 Wh L−1 energy density.
Debabrata Nandi +7 more
wiley +1 more source
Many cancer nanotherapeutics, while potent, suffer from the inability to escape from the tumor vasculature, especially in the absence of endothelial permeability. In this work, ultrasmall gold nanoclusters could engineer nanomaterials induced endothelial leakiness (NanoEL) and harness strong NIR induced photothermal characteristics to suppress tumor ...
Nengyi Ni +8 more
wiley +1 more source
This study develops a novel atomic engineering strategy to fine‐tune the spin state of α‐Fe2O3 catalysts toward a medium‐spin state, thereby modulating peroxymonosulfate activation and selectively yielding surface‐bound radicals. Compared with free radicals, surface‐bound radicals exhibit moderated oxidation potential, extended lifespan, surface ...
Shuyu Wang +7 more
wiley +1 more source
s‐Orbital Mediated Metavalent Bonding Enables State‐Of‐The‐Art n‐Type AgBiSe2 Thermoelectrics
Metavalent bonding (MVB) underpins the exceptional property portfolio of chalcogenides. Typical MVB solids are mainly found in p‐bonded systems. This work reveals that MVB can also be formed with s‐p orbital interactions upon forming a single‐electron σ‐bond, as exemplified in AgBiSe2.
Binrong Huang +13 more
wiley +1 more source
A robust zinc‐based metal–organic framework (ZnMOF) enables dual functions of doxorubicin delivery and sustained Zn2+ release to trigger ferroptosis‐enhnaced chemotherapy. DOX@ZnMOF effectively depletes intracellular glutathione, suppresses GPX4, and elevates reactive oxygen species, leading to efficient oxidative DNA damage and apoptosis.
Xin Ma +5 more
wiley +1 more source

