Results 141 to 149 of about 20,155 (149)
Perspective on Aqueous Batteries: Historical Milestones and Modern Revival
This review retraces the development of aqueous batteries from classical Zn‐MnO2 chemistry to modern Zn and Ni systems, correlating voltage, capacity, and electrolyte formulation with practical performance. By mapping historical success and failure onto current and future research directions, it identifies guiding principles that steer the design of ...
Fangwang Ming +5 more
wiley +1 more source
This study highlights the importance of designing photoanode architectures for solar water splitting that align intrinsic material properties with functional interfaces to optimize the extraction of photogenerated charges. The incorporation of NiOx surface layers in LaTiO2.5N0.5 (LTON) thin film photoanodes exemplifies this approach by leveraging band ...
Eric Burns +4 more
wiley +1 more source
Powder‐to‐Film Conversion of Nickel Single‐Atom Catalysts into Binder‐Free and Resistant Electrodes
A reproducible strategy is reported for fabricating standalone thin‐film electrodes composed of CNx‐supported Ni single‐atom catalysts. The resulting binder‐free electrodes exhibit robust stability, enhanced charge transfer, and superior electrochemical performance, offering scalable opportunities for applications in electrochemistry. ABSTRACT Although
Milla Vigliengo +8 more
wiley +1 more source
Recent research on laser‐processed cermets and cemented carbides highlights significant advancements, yet a notable paucity of studies and persistent challenges remain. Efforts are increasingly focused on developing low‐cost, environmentally friendly cermets as alternatives to conventional materials.
Himanshu Singh Maurya +2 more
wiley +1 more source
This critical review presents a comprehensive roadmap for the precision 3D printing of cellulose. Quantitative correlations link ink formulation and rheological properties to print fidelity and final material performance. This framework guides the development of advanced functional materials, from biomedical scaffolds to electromagnetic shielding ...
Majed Amini +3 more
wiley +1 more source
In this Perspective, we highlight the processing science and scale‐up capabilities of the Materials Engineering Research Facility (MERF) at the U.S. Department of Energy's Argonne National Laboratory, with an emphasis on practical solutions for sustainable water and critical resource recovery. We demonstrate how national laboratories bridge fundamental
Yuepeng Zhang +9 more
wiley +1 more source
Excitonic Landscapes in Monolayer Lateral Heterostructures Revealed by Unsupervised Machine Learning
Hyperspectral photoluminescence data from graded MoxW1 − xS2 alloys and monolayer MoS2–WS2 lateral heterostructures are analyzed using unsupervised machine learning. The combined use of PCA, t‐SNE, and DBSCAN uncovers distinct excitonic regions that trace how composition, strain, and defects modulate optical responses in these 2D materials.
Maninder Kaur +4 more
wiley +1 more source
To achieve efficient cancer cell death, a bowl‐shaped PDA@UiO‐66@DOX nanorobot drug‐delivery nanoplatform was developed. Near‐infrared irradiation not only drives the nanorobot to exhibit self‐thermophoretic motion and elevates temperature but also triggers Doxorubicin (DOX) release via hyperthermia, enhancing cancer cells uptake of DOX and thereby ...
Tong Lin +6 more
wiley +1 more source
Ecologically‐Valid Emotion Signatures Enhance Mood Disorder Diagnostics
This study identifies ecologically‐valid Divergent Emotional Functional Networks (DEFN), derived from dynamic functional connectivity during naturalistic movie watching. The DEFN reliably enhances diagnostic accuracy for mood disorders, including major depressive and bipolar disorders, demonstrating strong reproducibility across demographic factors and
Shuyue Xu +6 more
wiley +1 more source

