Results 141 to 150 of about 798,434 (344)

Effect of Nettle (Urtica dioca L.) density on fiber yield and quality in a natural ecosystem under East Mediterranean conditions

open access: diamond, 2020
Ioanna Kakabouki   +5 more
openalex   +2 more sources

Tailoring the Properties of Functional Materials With N‐Oxides

open access: yesAdvanced Functional Materials, EarlyView.
The properties of materials bearing N‐oxide groups are often dominated by the polar N+─O− bond. It provides hydrophilicity, selective ion‐binding, electric conductivity, or antifouling properties. Many of the underlying mechanisms have only recently been discovered, and the interest in N‐oxide materials is rapidly growing.
Timo Friedrich   +5 more
wiley   +1 more source

Burning characteristics and fiber retention of graphite/resin matrix composites [PDF]

open access: yes
Graphite fiber reinforced resin matrix composites were subjected to controlled burning conditions to determine their burning characteristics and fiber retention properties.
Bowles, K. J.
core   +1 more source

Designing Thermally Compatible Template‐Coating Pairs Toward Dimensionally Stable 3D Porous Carbons with Tunable Density

open access: yesAdvanced Functional Materials, EarlyView.
3D porous carbons with tunable density are crucial for energy storage, separations, and load‐bearing applications; however, their fabrication is often constrained by shrinkage during pyrolysis. This study optimizes and demonstrates the versatility of a template–coating pair strategy, producing materials that largely retain their shape and hierarchical ...
Adarsh Suresh   +7 more
wiley   +1 more source

A Smart Bio‐Battery Facilitates Diabetic Bone Defect Repair Via Inducing Macrophage Reprogramming and Synergistically Modulating Bone Remodeling Coupling

open access: yesAdvanced Functional Materials, EarlyView.
This research presents a novel implantable bio‐battery, GF‐OsG, tailored for diabetic bone repair. GF‐OsG generates microcurrents in high‐glucose conditions to enhance vascularization, shift macrophages to the M2 phenotype, and regulate immune responses.
Nanning Lv   +10 more
wiley   +1 more source

A Termite‐Inspired Alternative to Cement

open access: yesAdvanced Functional Materials, EarlyView.
A termite‐inspired composite of clay, cellulose, and lignin forms a dense fibrous network with concrete‐like strength (32 MPa) and superior elasticity, processed at ambient temperature. Abstract Clay combined with organic materials is used by termites as a strong and durable construction material for their mounds with minimal environmental impact. Here,
Oren Regev   +3 more
wiley   +1 more source

Grain Boundary Space Charge Engineering of Solid Oxide Electrolytes: Model Thin Film Study

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates unprecedented control of grain boundary electrical properties in solid electrolytes. Selective diffusion of cations through grain boundaries in thin films enables 12 orders of magnitude variation in ionic resistance, proving that systematic chemical modification of grain boundary electrical properties is feasible.
Thomas Defferriere   +5 more
wiley   +1 more source

Microsphere Autolithography—A Scalable Approach for Arbitrary Patterning of Dielectric Spheres

open access: yesAdvanced Functional Materials, EarlyView.
MicroSphere Autolithography (µSAL) enables scalable fabrication of patchy particles with customizable surface motifs. Focusing light through dielectric microspheres creates well defined, tunable patches via a conformal poly(dopamine) photoresist. Nearly arbitrary surface patterns can be achieved, with the resolution set by the index contrast between ...
Elliott D. Kunkel   +3 more
wiley   +1 more source

Use of Natural and Synthetic Fiber-Reinforced Composites for Punching Shear of Flat Slabs: A Comparative Study [PDF]

open access: gold, 2022
Panuwat Joyklad   +5 more
openalex   +1 more source

Local Thermal Conductivity Patterning in Rotating Lattice Crystals of Anisotropic Sb2S3

open access: yesAdvanced Functional Materials, EarlyView.
Microscale control of thermal conductivity in Sb2S3 is demonstrated via laser‐induced rotating lattice crystals. Thermal conductivity imaging reveals marked thermal transport anisotropy, with the c axis featuring amorphous‐like transport, whereas in‐plane directions (a, b) exhibit 3.5x and 1.7x larger thermal conductivity.
Eleonora Isotta   +13 more
wiley   +1 more source

Home - About - Disclaimer - Privacy