Results 281 to 290 of about 117,705 (315)

Microplastics from Wearable Bioelectronic Devices: Sources, Risks, and Sustainable Solutions

open access: yesAdvanced Functional Materials, EarlyView.
Bioelectronic devices (e.g., e‐skins) heavily rely on polymers that at the end of their life cycle will generate microplastics. For research, a holistic approach to viewing the full impact of such devices cannot be overlooked. The potential for devices as sources for microplastics is raised, with mitigation strategies surrounding polysaccharide and ...
Conor S. Boland
wiley   +1 more source

Laser‐Induced Microfabrication of Carbon Nanostructure: Processing Mechanism and Application for Next‐Generation Battery Technology

open access: yesAdvanced Functional Materials, EarlyView.
The article reviews laser‐processed carbons from various precursors, processing mechanism and their application in advanced batteries. The laser process is chemical free, fast, and scalable, enabling improved battery performance and stability for Li, Na, and Zn battery technologies.
Sujit Deshmukh   +2 more
wiley   +1 more source

Use of Biomass-Derived Materials for Their Potential Addition to Car Bumpers: A Critical Review. [PDF]

open access: yesPolymers (Basel)
Fragassa C   +5 more
europepmc   +1 more source

Advances in Stimuli‐Responsive Organic Materials and Polymers toward Intelligent CO2 Capture

open access: yesAdvanced Functional Materials, EarlyView.
Schematic illustration of the relationship between different stimuli and stimuli‐responsive organic materials and polymers for carbon dioxide (CO2) capture. Main stimuli include redox, pH, magnetism, temperature, light, and pressure. Furthermore, multi‐responsive materials, due to their high adaptability and scalability in complex environments, are ...
Jian Zhou   +2 more
wiley   +1 more source

Electrochemical Abuse‐Driven Thermal Runaway in Lithium‐Ion Batteries: Evolution From Beginning‐of‐Life to End‐of‐Life

open access: yesAdvanced Functional Materials, EarlyView.
Electrochemical abuse transforms thermal runaway behavior in lithium‐ion batteries. Through systematic decoupling of degradation mechanisms, this study reveals that lithium plating lowers the onset temperature by 10 °C, electrolyte consumption delays high‐temperature reactions, and capacity fade reduces total heat generation. These mechanistic insights
San Hwang   +12 more
wiley   +1 more source

Mechanical characterization of sisal fiber-groundnut shell powder reinforced epoxy composites. [PDF]

open access: yesSci Rep
Kumar KS   +5 more
europepmc   +1 more source

Experimental investigation and optimization of epoxy composites reinforced with jute fiber and alumina using the Jaya ANFIS approach. [PDF]

open access: yesSci Rep
Somsole LN   +8 more
europepmc   +1 more source

Home - About - Disclaimer - Privacy