Results 231 to 240 of about 555,376 (281)
This review maps how MOFs can manage hazardous gases by combining adsorption, neutralization, and reutilization, enabling sustainable air‐pollution control. Covering chemical warfare agent simulants, SO2, NOx, NH3, H2S, and volatile organic compounds, it highlights structure‐guided strategies that boost selectivity, water tolerance, and cycling ...
Yuanmeng Tian +8 more
wiley +1 more source
Patient‐specific induced pluripotent stem cells (iPSCs) can be differentiated into alveolar type II cells (iAT2s), expanded as 3D alveolospheres, and grown at physiologically relevant air–liquid interface (ALI). This study shows for the first time the infectability of iAT2s by the influenza A virus (IAV) and proves their responsiveness to the well ...
Lena Gauthier +7 more
wiley +1 more source
The repair and regeneration of brain tissue faces both biological and technical challenges. Injectable bioscaffolds offer new opportunities to stimulate tissue regrowth in the brain by recruiting neural stem cells. Here, the translational issues are reviewed that need to be address to advance this promising new therapeutic approach from the bench to ...
Michel Modo, Alena Kisel
wiley +1 more source
Radiation‐induced hypothyroidism follows head and neck radiotherapy due to oxidative stress and inflammation. Electrospun polycaprolactone scaffolds containing adenosine have potential to modulate thyroid repair. Scaffolds enhance thyrocyte proliferation, antioxidant enzymes glutathione peroxidase and catalase, reduce senescence and apoptosis markers ...
Maria Heim +5 more
wiley +1 more source
The incorporation of nondigested ECM and synthetic polymers into a co‐electrospinning system enables the decoupling of bioactivity and mechanical properties within a single wrap. This technique is used to develop a multifunctional bone wrap that achieves augmented membrane durability, sustained infection control, and enhanced vascularity for use in ...
Sarah Jones +14 more
wiley +1 more source
Design rules are presented to control intestinal organoid polarity in fully synthetic hydrogels. The laminin‐derived IKVAV sequence is crucial to obtain correct intestinal organoid polarity. Increasing hydrogel dynamics further supports the growth of correctly polarized intestinal organoids, while a bulk level of stiffness (G’ ≈ 0.7 kPa) is crucial to ...
Laura Rijns +10 more
wiley +1 more source
Bioprinting Organs—Science or Fiction?—A Review From Students to Students
Bioprinting artificial organs has the potential to revolutionize the medical field. This is a comprehensive review of the bioprinting workflow delving into the latest advancements in bioinks, materials and bioprinting techniques, exploring the critical stages of tissue maturation and functionality.
Nicoletta Murenu +18 more
wiley +1 more source
Despite significant efforts in developing novel biomaterials to regenerate tissue, only a few of them have successfully reached clinical use. It has become clear that the next generation of biomaterials must be multifunctional. Smart biomaterials can respond to environmental or external stimuli, interact in a spatial‐temporal manner, and trigger ...
Sonya Ghanavati +12 more
wiley +1 more source
This work presents a novel, dynamically perfused, configurable microfluidic system for epidermis‐only (E and full‐thickness skin (FT SoC) growth, emulating human skin structure and barrier function. Upon TiO2 nanoparticle exposure, the system reveals compromised barrier integrity, reduced metabolic activity, increased permeability, and chemokine‐driven
Samantha Costa +7 more
wiley +1 more source
3D Printing Strategies for Bioengineering Human Cornea
This review highlights recent progress in 3D bioprinting strategies for engineering human corneas. Key aspects include the replication of corneal transparency, curvature, and biomechanical properties, alongside innovations in recent advancements in 3D printing methods, which benefit in overcoming current challenges.
Yunong Yuan +4 more
wiley +1 more source

