Results 291 to 300 of about 553,830 (348)

Mechanically Tunable Bone Scaffolds: In Vivo Hardening of 3D‐Printed Calcium Phosphate/Polycaprolactone Inks

open access: yesAdvanced Functional Materials, EarlyView.
A 3D bone scaffold with osteogenic properties and capable of hardening in vivo is developed. The scaffold is implanted in a ductile state, and a phase transformation of the ceramic induces the stiffening and strengthening of the scaffold in vivo. Abstract Calcium phosphate 3D printing has revolutionized customized bone grafting.
Miguel Mateu‐Sanz   +7 more
wiley   +1 more source

Modulating Electrochemical CO2 Reduction Pathways via Interfacial Electric Field

open access: yesAdvanced Functional Materials, EarlyView.
Engineering interfacial electric fields in Cu/ITO electrodes enables precise control of CO2 reduction pathways. Charge transfer from Cu to ITO generates positively charged Cu species that steer selectivity from ethylene toward methane. This work demonstrates how interfacial electric‐field modulation can direct reaction intermediates and transform ...
Mahdi Salehi   +7 more
wiley   +1 more source

Composites of Shellac and Silver Nanowires as Flexible, Biobased, and Corrosion‐Resistant Transparent Conductive Electrodes

open access: yesAdvanced Functional Materials, EarlyView.
Shellac, a centuries‐old natural resin, is reimagined as a green material for flexible electronics. When combined with silver nanowires, shellac films deliver transparency, conductivity, and stability against humidity. These results position shellac as a sustainable alternative to synthetic polymers for transparent conductors in next‐generation ...
Rahaf Nafez Hussein   +4 more
wiley   +1 more source

Enhanced Switching Performance in Single‐Crystalline PbTiO3 Ferroelectric Memristors for Replicating Synaptic Plasticity

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrated single‐crystalline PbTiO3‐based memristors with atomically sharp interfaces, well‐ordered lattices, and minimal lattice mismatch. The devices exhibited an ON/OFF ratio exceeding 105, high stability, and rich resistance‐state modulation.
Haining Li   +7 more
wiley   +1 more source

Electroactive Metal–Organic Frameworks for Electrocatalysis

open access: yesAdvanced Functional Materials, EarlyView.
Electrocatalysis is crucial in sustainable energy conversion as it enables efficient chemical transformations. The review discusses how metal–organic frameworks can revolutionize this field by offering tailorable structures and active site tunability, enabling efficient and selective electrocatalytic processes.
Irena Senkovska   +7 more
wiley   +1 more source

Ion‐Selective Microporous Membranes via One‐Step Copolymerization Enable High‐Performance Redox Flow Batteries

open access: yesAdvanced Functional Materials, EarlyView.
A scalable one‐step copolymerization strategy is developed to produce low‐cost microporous ion exchange membranes that boost both the efficiency and lifespan of flow batteries. When combined with organic electrolytes in aqueous systems, these membranes enable safe and cheap flow battery energy storage, supporting the widespread integration of renewable
Jiaye Liu   +7 more
wiley   +1 more source

Self‐Immolative Activatable Nanoassembly toward Immuno‐Photodynamic Therapy in TME

open access: yesAdvanced Functional Materials, EarlyView.
A quinone methide‐gated, self‐immolative, H2O2‐responsive nano‐photosensitizer (Pyz/PS) is developed for targeted immuno‐photodynamic therapy. Pyz/PS selectively activates within tumor microenvironments, restores photosensitizer activity, generates ROS, and depletes intracellular GSH, enhancing oxidative stress.
Jing Li   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy