Results 261 to 270 of about 2,639,905 (339)

NEAT1 Promotes Epileptogenesis in Tuberous Sclerosis Complex

open access: yesAdvanced Science, EarlyView.
The primary neurological manifestations of tuberous sclerosis complex (TSC) are intractable epilepsy and intellectual disability. NEAT1 is differentially expressed in TSC‐related epilepsy and influences neuronal excitability by regulating the PI3K/AKT/mTOR signaling pathway.
Suhui Kuang   +8 more
wiley   +1 more source

Automating the extraction of otology symptoms from clinic letters: a methodological study using natural language processing. [PDF]

open access: yesBMC Med Inform Decis Mak
Joshi N   +9 more
europepmc   +1 more source

CircSMEK1 Suppresses HCC via the hnRNPK‐IGF2‐AKT Axis: A Diagnostic Biomarker and Therapeutic Target

open access: yesAdvanced Science, EarlyView.
CircSMEK1 is downregulated in MASH/HCC and predicts poor prognosis. It suppresses tumor progression by promoting hnRNPK ubiquitination and inhibiting the IGF2/PI3K/AKT axis, while its loss activates immunosuppressive cancer‐associated fibroblasts. Serum circSMEK1 serves as a non‐invasive diagnostic biomarker, and its restoration potently inhibits HCC ...
Peilan Guo   +15 more
wiley   +1 more source

Microglial Deletion of Hrh4 Alleviates Alzheimer's Disease Pathologies by Enhancing Microglial Phagocytosis of Amyloid‐β and Tau

open access: yesAdvanced Science, EarlyView.
Histamine H4 receptor (H4R) antagonist VUF6002 mimics low‐dose X‐ray irradiation in aged Alzheimer's disease (AD) mice, enhancing microglial clearance of amyloid‐beta/hyperphosphorylated tau aggregates and restoring cognition. Microglial H4R deletion activates cAMP/TGF‐β1/Smad3 pathway, enhancing phagocytosis, while TGF‐β receptor 1 deletion abolishes ...
Yi‐Jun Xu   +5 more
wiley   +1 more source

Gut Microbial Genetic Variation Prolongs Host Healthy Longevity and Remodels Metabolome and Proteome in Drosophila Melanogaster

open access: yesAdvanced Science, EarlyView.
This study reveals that specific genetic variations in gut‐residing Saccharomyces cerevisiae significantly extend healthspan and lifespan in Drosophila melanogaster. These mutants rejuvenate aged intestinal metabolism, upregulate mitochondrial proteins, and enhance energy pathways.
Liying Wang   +11 more
wiley   +1 more source

Natural Language Processing for Identification of Hospitalized People Who Use Drugs: Cohort Study. [PDF]

open access: yesJMIR AI
Sato T   +7 more
europepmc   +1 more source

Home - About - Disclaimer - Privacy