Higher-order in time “quasi-unconditionally stable” ADI solvers for the compressible Navier–Stokes equations in 2D and 3D curvilinear domains [PDF]
This paper introduces alternating-direction implicit (ADI) solvers of higher order of time-accuracy (orders two to six) for the compressible Navier-Stokes equations in two- and three-dimensional curvilinear domains. The higher-order accuracy in time results from 1) An application of the backward differentiation formulae time-stepping algorithm (BDF) in
Bruno, Oscar P., Cubillos, Max
openaire +5 more sources
Solutions of the Navier–Stokes Equation at Large Reynolds Number [PDF]
The problem of two-dimensional incompressible laminar flow past a bluff body at large Reynolds number $( R )$ is discussed. The governing equations are the Navier–Stokes equations. For $R = \infty $, the Euler equations are obtained. A solution for R large should be obtained by a perturbation of an Euler solution. However, for given boundary conditions,
openaire +4 more sources
A Liouville theorem for the planer Navier-Stokes equations with the no-slip boundary condition and its application to a geometric regularity criterion [PDF]
We establish a Liouville type result for a backward global solution to the Navier-Stokes equations in the half plane with the no-slip boundary condition. No assumptions on spatial decay for the vorticity nor the velocity field are imposed.
Giga, Yoshikazu+2 more
core +2 more sources
In this article, we consider a three dimensional compressible Navier-Stokes-Korteweg equations with the effect of external potential force. Under the smallness assumptions on both the external potential force and the initial perturbation of the ...
Kaile Chen, Yunyun Liang, Nengqiu Zhang
doaj +1 more source
The use of dual reciprocity method for 2D laminar viscous flow [PDF]
The paper presents the use of the dual reciprocity multidomain singular boundary method (SBMDR) for the solution of the laminar viscous flow problem described by Navier-Stokes equations.
Mužík Juraj
doaj +1 more source
Splitting method and the existence of a strong solution of the Navier-Stokes equations
In the author’s article from the previous issue of the journal from the properties of the ONS solutions the relation between pressure and module square of velocity vector is set.
A.Sh. Akysh (Akishev)
doaj +1 more source
On the hydrostatic approximation of compressible anisotropic Navier–Stokes equations
In this work, we obtain the hydrostatic approximation by taking the small aspect ratio limit to the Navier–Stokes equations. The aspect ratio (the ratio of the depth to horizontal width) is a geometrical constraint in general large scale motions meaning ...
Gao, Hongjun+2 more
doaj +1 more source
Linearization of the Navier-Stokes equations [PDF]
This paper studies mathematical models of the heat transfer process of a viscous incompressible fluid. Optimal control methods are used to solve the problem of optimal modeling.
Nazarov Serdar+2 more
doaj +1 more source
Analytical Solutions to the Navier-Stokes Equations [PDF]
With the previous results for the analytical blowup solutions of the N-dimensional Euler-Poisson equations, we extend the similar structure to construct an analytical family of solutions for the isothermal Navier-Stokes equations and pressureless Navier ...
Lions P. L., Yuen Manwai
core +2 more sources
Average Process of Fractional Navier–Stokes Equations with Singularly Oscillating Force
The averaging process between two-dimensional fractional Navier–Stokes equations driven by a singularly oscillating external force and the averaged equations corresponding to the limiting case are investigated.
Chunjiao Han+3 more
doaj +1 more source