Results 11 to 20 of about 32,174 (313)
Navier-Stokes Equations with Potentials
We study Navier-Stokes equations perturbed with a maximal monotone operator, in a bounded domain, in 2D and 3D. Using the theory of nonlinear semigroups, we prove existence results for strong and weak solutions. Examples are also provided.
Adriana-Ioana Lefter
doaj +4 more sources
Linearization of the Navier-Stokes equations [PDF]
This paper studies mathematical models of the heat transfer process of a viscous incompressible fluid. Optimal control methods are used to solve the problem of optimal modeling.
Nazarov Serdar+2 more
doaj +3 more sources
On Unique Continuation for Navier-Stokes Equations [PDF]
We study the unique continuation properties of solutions of the Navier-Stokes equations. We take advantage of rotation transformation of the Navier-Stokes equations to prove the “logarithmic convexity” of certain quantities, which measure the suitable ...
Zhiwen Duan, Shuxia Han, Peipei Sun
doaj +3 more sources
On the Navier–Stokes equations on surfaces [PDF]
AbstractWe consider the motion of an incompressible viscous fluid that completely covers a smooth, compact and embedded hypersurface$$\Sigma $$Σwithout boundary and flows along$$\Sigma $$Σ. Local-in-time well-posedness is established in the framework of$$L_p$$Lp-$$L_q$$Lq-maximal regularity.
Jan Prüss+2 more
openaire +4 more sources
Navier-Stokes equations with delays [PDF]
Some results on the existence and uniqueness of solutions to Navier-Stokes equations when the external force contains some hereditary characteristics are proved.
Caraballo Garrido, Tomás+1 more
openaire +3 more sources
Euler and Navier-Stokes equations [PDF]
We present results concerning the local existence, regularity and possible blow up of solutions to incompressible Euler and Navier-Stokes equations.
openaire +6 more sources
On the hydrostatic approximation of compressible anisotropic Navier–Stokes equations
In this work, we obtain the hydrostatic approximation by taking the small aspect ratio limit to the Navier–Stokes equations. The aspect ratio (the ratio of the depth to horizontal width) is a geometrical constraint in general large scale motions meaning ...
Gao, Hongjun+2 more
doaj +1 more source
Recasting Navier–Stokes equations
Abstract Classical Navier–Stokes equations fail to describe some flows in both the compressible and incompressible configurations. In this article, we propose a new methodology based on transforming the fluid mass velocity vector field to obtain a new class of continuum models.
M H Lakshminarayana Reddy+4 more
openaire +4 more sources
Approximations of stochastic Navier–Stokes equations [PDF]
In this paper we show that solutions of two-dimensional stochastic Navier-Stokes equations driven by Brownian motion can be approximated by stochastic Navier-Stokes equations forced by pure jump noise/random kicks.
Shang, Shijie, Zhang, Tusheng
openaire +4 more sources
Splitting method and the existence of a strong solution of the Navier-Stokes equations
In the author’s article from the previous issue of the journal from the properties of the ONS solutions the relation between pressure and module square of velocity vector is set.
A.Sh. Akysh (Akishev)
doaj +1 more source