Results 71 to 80 of about 54,357 (197)
By mimicking the ion‐accelerating effect of ion channel receptors in neuron membranes, a biomaterials‐based ionic hydrogel (BIH) is developed, which offers a high ionic conductivity of 7.04 S m−1, outperforming conventional chitosan, cellulose, agarose, starch, and gelatin based ionic hydrogels.
Baojin Chen +7 more
wiley +1 more source
Here, a biointerface membrane engineered with site‐specific interfacial properties is developed. During implantation between gingival and bone defect, the membrane creates a pro‐osteogenic microenvironment, precisely modulates cellular activities at each biointerface, and facilitates the orchestration of complex healing events, ultimately leading to ...
Yuwei Zhu +13 more
wiley +1 more source
This study develops a self‐powered permeable electronic dressing (SPED) that synergistically integrates exudate management, electrical stimulation, and on‐demand drug delivery. The dressing effectively absorbs exudate while demonstrating potent antibacterial activity and accelerated tissue regeneration in diabetic mouse models, thereby promoting ...
Jiaheng Liang +12 more
wiley +1 more source
This study develops a novel atomic engineering strategy to fine‐tune the spin state of α‐Fe2O3 catalysts toward a medium‐spin state, thereby modulating peroxymonosulfate activation and selectively yielding surface‐bound radicals. Compared with free radicals, surface‐bound radicals exhibit moderated oxidation potential, extended lifespan, surface ...
Shuyu Wang +7 more
wiley +1 more source
Beyond the Edge: Charge‐Transfer Excitons in Organic Donor‐Acceptor Cocrystals
Complex excitonic landscapes in acene–perfluoroacene cocrystals are unveiled by polarization‐resolved optical spectroscopy and many‐body theory. This systematic study of a prototypical model system for weakly interacting donor–acceptor compounds challenges common views of charge‐transfer excitons, providing a refined conceptual framework for ...
Sebastian Anhäuser +6 more
wiley +1 more source
Reprogrammable multi‐material smart textiles knitted from liquid crystal elastomer fibers undergo 2D and 3D deformation under thermal and photo stimuli. Circularly knitted tubular structures reversibly contract in radial and axial directions, enabling autonomous climbing, liquid release, and micro pumping.
Xue Wan +8 more
wiley +1 more source
We present a fully printed aqueous zinc‐ion microbattery (ZnIB) enabled by graphene‐decorated zinc anode and printed MnO@NC cathode using sustainable aqueous‐based ink formulations. The printed 3D electrodes ensure uniform zinc deposition, low overpotential, and long‐term stability.
Nagaraju Goli +11 more
wiley +1 more source
Amyloidogenic Peptide Fragments Designed From Bacterial Collagen‐like Proteins Form Hydrogel
This study identified amyloidogenic sequence motifs in bacterial collagen‐like proteins and exploited these to design peptides that self‐assemble into β‐sheet fibers and form hydrogels. One hydrogel supported healthy fibroblast growth, showing promise for biocompatible materials. Our work demonstrates that bacterial sequences can be harnessed to create
Vamika Sagar +5 more
wiley +1 more source
Plastically flexible single crystals of the bimetallic phosphonate framework [Cu(2,2′‐bpy)VO(O3PC6H5)2] combine mechanical adaptability with robust pseudocapacitive charge storage. The material delivers about 140 Fg−1 at pH 4 and pH 10 and remains stable across pH 2‐12, enabling energy storage under comparatively mild electrolyte conditions.
Tim Müller +11 more
wiley +1 more source
Coagulative granular hydrogels are composed of packed thrombin‐functionalized microgels that catalyze the conversion of fibrinogen into a secondary fibrin network, filling the interstitial voids. This bio‐inspired approach stabilizes the biomaterial to match the robustness of bulk hydrogels without compromising injectability, mimicking the initial ...
Zhipeng Deng +16 more
wiley +1 more source

