Results 71 to 80 of about 262,340 (175)
In this paper, we prove the existence and multiplicity of positive solutions for a class of fractional p & q Laplacian problem with singular nonlinearity.
Dandan Yang, Chuanzhi Bai
doaj +1 more source
In this paper, we deal with a class of fractional Laplacian system with critical Sobolev-Hardy exponents and sign-changing weight functions in a bounded domain.
Jinguo Zhang, Tsing-San Hsu
doaj +1 more source
Ground state solution of a noncooperative elliptic system
In this paper, we study the existence of a ground state solution, that is, a non trivial solution with least energy, of a noncooperative semilinear elliptic system on a bounded domain.
Batkam, Cyril Joel
core +1 more source
Planar Choquard equations with critical exponential reaction and Neumann boundary condition
Abstract We study the existence of positive weak solutions for the following problem: −Δu+α(x)u=∫ΩF(y,u)|x−y|μ1dyf(x,u)inΩ,∂u∂η+βu=∫∂ΩG(y,u)|x−y|μ2dνg(x,u)on∂Ω,$$\begin{equation*} \begin{aligned} \hspace*{65pt}-\Delta u + \alpha (x) u &= {\left(\int \limits _{\Omega }\frac{F(y,u)}{|x-y|^{{\mu _1}}}\;dy\right)}f(x,u) \;\;\text{in} \; \Omega,\\ \hspace ...
Sushmita Rawat+2 more
wiley +1 more source
Critical nonlocal systems with concave-convex powers
By using the fibering method jointly with Nehari manifold techniques, we obtain the existence of multiple solutions to a fractional $p$-Laplacian system involving critical concave-convex nonlinearities provided that a suitable smallness condition on the ...
Chen, Wenjing, Squassina, Marco
core +1 more source
Non‐autonomous double phase eigenvalue problems with indefinite weight and lack of compactness
Abstract In this paper, we consider eigenvalues to the following double phase problem with unbalanced growth and indefinite weight, −Δpau−Δqu=λm(x)|u|q−2uinRN,$$\begin{equation*} \hspace*{3pc}-\Delta _p^a u-\Delta _q u =\lambda m(x)|u|^{q-2}u \quad \mbox{in} \,\, \mathbb {R}^N, \end{equation*}$$where N⩾2$N \geqslant 2$, 1
Tianxiang Gou, Vicenţiu D. Rădulescu
wiley
In this paper, the nonlinear quasilinear elliptic problem with the logarithmic nonlinearity −div∇up−2∇u=axφpulogu+hxψpu in Ω⊂Rn was studied. By means of a double perturbation argument and Nehari manifold, the authors obtain the existence results.
Zhoujin Cui+4 more
doaj +1 more source
Generalized Nehari manifold and semilinear Schrödinger equation with weak monotonicity condition on the nonlinear term [PDF]
We study the Schrödinger equations − Δ u + V ( x ) u = f ( x , u ) -\Delta u + V(x)u = f(x,u) in R N \mathbb {R}^N and − Δ u − λ u
Francisco Odair de Paiva+2 more
openalex +4 more sources
Variational properties and orbital stability of standing waves for NLS equation on a star graph
We study standing waves for a nonlinear Schr\"odinger equation on a star graph {$\mathcal{G}$} i.e. $N$ half-lines joined at a vertex. At the vertex an interaction occurs described by a boundary condition of delta type with strength $\alpha\leqslant 0 ...
Adami, R.+3 more
core +1 more source
Comparison moduli spaces of Riemann surfaces
We define a kind of moduli space of nested surfaces and mappings, which we call a comparison moduli space. We review examples of such spaces in geometric function theory and modern Teichmueller theory, and illustrate how a wide range of phenomena in ...
Schippers, Eric, Staubach, Wolfgang
core +1 more source