Results 291 to 300 of about 310,076 (357)

Injectable Stimuli‐Responsive Amphiphilic Hydrogel for Rapid Hemostasis, Robust Tissue Adhesion, and Controlled Drug Delivery in Trauma and Surgical Care

open access: yesAdvanced Healthcare Materials, EarlyView.
Fast‐acting hydrogel seals bleeding wounds as the illustrated injectable, pH‐responsive network rapidly gels in situ to stop hemorrhage, adhere strongly to wet tissue, and release antibiotics in a controlled, pH‐dependent manner. The material withstands high pressures, shows excellent biocompatibility, and degrades safely, offering a versatile platform
Arvind K. Singh Chandel   +5 more
wiley   +1 more source

Tunable Bioresorbable Scaffolds With Marine Sulfated Polysaccharides for Small‐Caliber Vascular Grafts: A Multi‐Layered Strategy Combining Electrospinning and 4‐Axis Printing

open access: yesAdvanced Healthcare Materials, EarlyView.
A multilayered small‐caliber vascular scaffold combining electrospinning and 4‐axis printing is developed and biofunctionalized with marine sulfated polysaccharides from Holothuria tubulosa. The resulting construct exhibits enhanced hemocompatibility, tunable mechanical properties, and supports endothelial and smooth muscle cell adhesion and ...
Gabriele Obino   +9 more
wiley   +1 more source

Directional Liquid Transport Enabled pH‐Responsive Hierarchical Composite for Enhanced Wound Healing

open access: yesAdvanced Healthcare Materials, EarlyView.
A hierarchical composite with a gradient architecture transitioning from hydrophobic to hydrophilic layers integrates diode‐like liquid transport, efficient water absorption, breathability, and mechanical robustness. This device enables a multifunctional therapeutic platform with pH‐responsive dual‐drug release, providing synergistic anti‐inflammatory ...
Baolin Wang   +5 more
wiley   +1 more source

Flexible Polypyrrole‐Based pH Sensors via Oxidative Chemical Vapor Deposition

open access: yesAdvanced Healthcare Materials, EarlyView.
Oxidative chemical vapor deposition (oCVD) of polypyrrole (PPy) thin films yields flexible, electrically conductive, and biocompatible pH sensors for monitoring on‐skin biological events. The highly sensitive, oCVD PPy skin‐conformal sensors enable real‐time, spatially resolved sensing of dynamic pH changes within physiologically relevant ranges (4–9 ...
Adrivit Mukherjee   +15 more
wiley   +1 more source

Pioneering the Future: Principles, Advances, and Challenges in Organic Electrodes for Aqueous Ammonium‐Ion Batteries

open access: yesAdvanced Materials, Volume 37, Issue 13, April 2, 2025.
Leveraging the numerous advantages of ammonium‐ion (NH₄⁺)—including cost‐effectiveness, low corrosiveness, preferential orientation, and rapid diffusion kinetics—aqueous NH₄⁺ batteries (AAIBs) have gained significant attention. This review highlights and evaluates the progress of AAIBs utilizing organic electrode materials such as small molecules ...
Mangmang Shi, Xiaoyan Zhang
wiley   +1 more source

Biofilm‐Antagonist Ginger‐Based 3D‐Printable Photoresins for Complex Implant Designs Exhibiting Advanced Multifunctional Biomedical Applications

open access: yesAdvanced Materials, EarlyView.
This work offers unique Ginger‐based 3D‐printable resins that can print customizable high‐resolution complex designs. The customizable printing backbone of Zingerol prints also mimics various human bones' strength. Acquisition of in‐vivo biocompatibility in rat model with no severe inflammatory response, along with in‐vitro antioxidant and ex‐vivo anti‐
Simran Jindal   +9 more
wiley   +1 more source

Myelinated Retinal Nerve Fibers

American Journal of Ophthalmology, 1981
In a series of 3,968 consecutive autopsies, myelinated nerve fibers of the retina were presented in 39 (0.98%) cases and bilateral in three (7.7%) affected cases; thus, 42 (0.54%) of the 7,936 eyes examined were affected. Myelinated nerve fiber lesions appeared as white or gray-white striated patches corresponding in shape to the distribution of ...
B R, Straatsma   +3 more
openaire   +2 more sources

Home - About - Disclaimer - Privacy