Results 201 to 210 of about 3,353,954 (329)

Tapered Pillar Design for High‐Precision Force Readout in Miniaturized Engineered Heart Tissues From Human Pluripotent Stem Cells

open access: yesAdvanced Healthcare Materials, EarlyView.
Engineered heart tissues (EHTs) are a valuable approach in capturing human cardiac physiology and drug responses in vitro. Here, a novel tapered pillar design is developed in an EHT platform to confine tissues in a predefined position‐ at the middle of the pillar height.
Milica Dostanić   +9 more
wiley   +1 more source

Miniaturized Wireless tDCS With Concentric Electrodes for Targeted Cortical Stimulation in Freely Moving Mice

open access: yesAdvanced Healthcare Materials, EarlyView.
This study introduces a wireless and miniaturized concentric‐electrode tDCS (CE‐tDCS) system tailored for freely moving mice. The device enables focal and multi‐site cortical stimulation via a lightweight, Bluetooth‐controlled platform. By integrating local neuromodulation with real‐time behavioral analysis, the system provides a robust tool for ...
Minseok Kim   +5 more
wiley   +1 more source

Extreme MetaboHealth scores in three cohort studies associate with plasma protein markers for inflammation and cholesterol transport. [PDF]

open access: yesImmun Ageing
Bizzarri D   +17 more
europepmc   +1 more source

Rational Molecular Design of Aniline‐Based Donor‐Acceptor Conducting Polymers Enhancing Ionic Molecular Interaction for High‐Performance Wearable Bioelectronics

open access: yesAdvanced Healthcare Materials, EarlyView.
Organic conducting polymers are crucial for advanced wearable bioelectronic devices. A novel aniline‐based donor‐acceptor conducting polymer is developed via a rational molecular design approach, exhibiting enhanced ionic molecular interactions for highly sensitive and stable wearable pH sensors.
Junning Qian   +3 more
wiley   +1 more source

3D‐Printed Multidimensional Bionic Mg‐MC/PLGA Composite for Tailored Repair of Segmental Long Bone Defects

open access: yesAdvanced Healthcare Materials, EarlyView.
This study develops 3D‐printed Mg‐MC/PLGA scaffolds with varying Mg concentrations (0–20%). The 5% Mg scaffold shows optimal cytocompatibility, osteogenic activity in vitro, and significantly enhances bone regeneration in rabbits, improving bone volume and mechanical strength.
Shihang Liu   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy