Results 251 to 260 of about 1,236,346 (304)

High‐Entropy Perovskite Nanofibers for Bifunctional Air Electrodes in Reversible Protonic Ceramic Electrochemical Cells

open access: yesAdvanced Functional Materials, EarlyView.
High‐entropy perovskite nanofibers serve as robust and active bifunctional air electrodes in reversible protonic ceramic electrochemical cells. Their compositional complexity stabilizes the lattice, enriches oxygen vacancies, and accelerates surface exchange.
Hyeonggeun Kim   +4 more
wiley   +1 more source

Emergent Spin‐Glass Behavior in an Iron(II)‐Based Metal–Organic Framework Glass

open access: yesAdvanced Functional Materials, EarlyView.
A one‐pot, solvent‐free synthesis yields an Fe2+‐based metal‐organic framework (MOF) glass featuring a continuous random network structure. The material exhibits spin‐glass freezing at 14 K, driven by topological‐disorder and short‐range magnetic frustration, showcasing the potential of MOF glasses as a plattform for cooperative magnetic phenomena in ...
Chinmoy Das   +8 more
wiley   +1 more source

A Smart Magnetically Actuated Flip‐Disc Programmable Metasurface with Ultralow Power Consumption for Real‐Time Channel Control

open access: yesAdvanced Functional Materials, EarlyView.
The study proposes a 1‐bit programmable metasurface based on flip‐disc display, named flip‐disc metasurface (FD‐MTS). This new design enables ultralow energy consumption while maintaining coding patterns. It also exhibits high scalability and multifunctional flexibility.
Jiang Han Bao   +8 more
wiley   +1 more source

Bioinspired Bromination Enables Extensible, Strain‐Stiffening Resilin Peptide Scaffolds with Tunable Degradation

open access: yesAdvanced Functional Materials, EarlyView.
Bioinspired bromination of a resilin‐derived peptide enables the fabrication of electrospun nanofibrous scaffolds that uniquely combine strain‐stiffening elasticity, proteolytic stability, and antioxidant functionality. These brominated peptide–gelatin hybrids mimic the extensibility of natural elastomers, demonstrating tunable mechanical resilience ...
Elisa Marelli   +6 more
wiley   +1 more source

Leaky Integrate‐and‐Fire Neuron Based on Organic Electrochemical Transistor for Spiking Neural Networks with Temporal‐Coding [PDF]

open access: gold
Yuanyuan Zhu   +10 more
openalex   +1 more source

4D Mapping of ZIF Biocomposites for High Protein Loading and Tunable Release Profiles

open access: yesAdvanced Functional Materials, EarlyView.
Systematic four‐dimensional mapping of zeolitic imidazolate framework biocomposites reveals how precursor ratios, total concentration, and washing define crystalline phase, protein loading, and release kinetics. This comprehensive study identifies conditions yielding record loading (∼85%) and precise phase–property correlations.
Michael R. Hafner   +12 more
wiley   +1 more source

Tuning the Electronic Structure and Spin State of Fe─N─C Catalysts Using an Axial Oxygen Ligand and Fe Clusters for High‐Efficiency Rechargeable Zinc–Air Batteries

open access: yesAdvanced Functional Materials, EarlyView.
A FeN4─O/Clu@NC‐0.1Ac catalyst containing atomically‐dispersed FeN4─O sites (medium‐spin Fe2+) and Fe clusters delivered a half‐wave potential of 0.89 V for ORR and an overpotential of 330 mV at 10 mA cm−2 for OER in 0.1 m KOH. When the catalyst was used in a rechargeable Zn–air battery, a power density of 284.5 mW cm−2 was achieved with excellent ...
Yongfang Zhou   +8 more
wiley   +1 more source

Joint Control of Radiated and Surface Waves via Space‐Time Coding Metasurfaces

open access: yesAdvanced Functional Materials, EarlyView.
A unified space‐time coding metasurface platform enables simultaneous control of radiated and surface‐confined waves across multiple harmonics. Demonstrated functionalities include multi‐frequency beam shaping; surface‐wave excitation, and hybrid multiplexing.
Zihao Dai   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy