Results 231 to 240 of about 38,322 (299)

Multimodal AI‐Driven Identification of Dehydrocostus Lactone as a Potent Renal Fibrosis Attenuator Targeting IQGAP1

open access: yesAdvanced Science, EarlyView.
Renal fibrosis, a hallmark of CKD, lacks effective treatments. Herein, we developed a multimodal AI model (TCM‐SPred) to identify anti‐fibrotic agents and found that dehydrocostus lactone (DCL) targets IQGAP1 to inhibit Wnt signaling, blocking the interaction between IQGAP1 and CCT3, demonstrating potent anti‐fibrotic activity in vitro and in vivo ...
Weijiang Lin   +12 more
wiley   +1 more source

Seamless Resource Sharing in Wearable Networks by Application Function Virtualization

open access: green, 2018
Harini Kolamunna   +4 more
openalex   +2 more sources

Transcription Factor Promiscuity Drives Regulatory Rewiring and Evolvability in Gene Networks in Bacteria

open access: yesAdvanced Science, EarlyView.
ABSTRACT This special issue marking the University of Bath's 60th anniversary offers an opportunity to reflect on nearly a decade of research into the evolution of gene regulatory networks (GRNs) from members of the lab and elsewhere. Our goal is to understand how GRNs rewire and how new transcription factor (TF) functions evolve. Using an experimental
Tiffany B. Taylor, Alan M. Rice
wiley   +1 more source

Reconstructing Coherent Functional Landscape From Multi‐Modal Multi‐Slice Spatial Transcriptomics by a Variational Spatial Gaussian Process

open access: yesAdvanced Science, EarlyView.
This study introduces stVGP, a variational spatial Gaussian process framework for multi‐modal, multi‐slice spatial transcriptomics. By integrating histological and genomic data through hybrid alignment and attention‐based fusion, stVGP reconstructs coherent 3D functional landscapes.
Zedong Wang   +3 more
wiley   +1 more source

Systematically Engineering for Efficient Production of 3‐Methyl‐1‐Butanol in Escherichia coli

open access: yesAdvanced Science, EarlyView.
An integrated metabolic engineering strategy was established for high‐level 3‐methyl‐1‐butanol biosynthesis in Escherichia coli. Molecular dynamics‐guided semi‐rational engineering of dihydroxyacid dehydratase uncovered and relieved key catalytic bottlenecks, while adaptive laboratory evolution enhanced strain robustness.
Nanfei Geng   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy